
Mechanically Jointed Rodless Cylinder

Series MY1B

Basic Type: Ø25, Ø32, Ø40

* With hexagon socket taper plug except port 1.

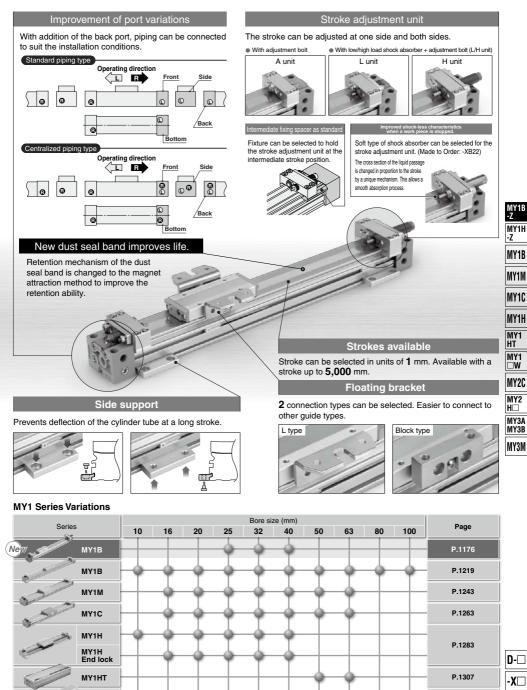

Easy adjustment of cushion needle

Adjustment is easier by changing the cushion needle adjustment from side to top.

Auto switch can be mounted in any desired position.

Auto switches can be mounted from the front at any position on the mounting groove. Contributes to reduction in mounting time.

Front mounting


SMC

Insert it at the notch and slide it along the mounting groove

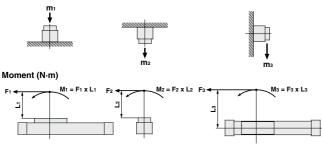
MY1DW

Mechanically Jointed Rodless Cylinder

1171

Technical data

P 1327


Series MY1B Prior to Use

Maximum Allowable Moment/Maximum Load Mass

Model	Bore size	Maximum a	allowable mo	ment (N·m)	Maximum load mass (kg)			
Woder	(mm)	M1	M2	Мз	m 1	m ₂	m3	
	25	10	1.2	3.0	29	5.8	5.4	
MY1B	32	20	2.4	6.0	40	8.0	8.8	
	40	40	4.8	12	53	10.6	14	

The above values are the maximum allowable values for moment and load mass. Refer to each graph regarding the maximum allowable moment and maximum load mass for a particular piston speed.

Load mass (kg)

Caution on Design

- We recommend an external shock absorber be installed when the cylinder is combined with another guide (connection with floating bracket, etc.) and the maximum load mass is exceeded.
- 2. Load factor of 0.5 or less

When the load factor is high against the cylinder output, it may adversely affect the cylinder (condensation, etc.) and cause malfunctions. Select a cylinder to make the load factor 0.5 or less. (Mainly when using an external guide)

When using it as a load balancer, please contact SMC sales representatives.

3. Consider uncalculated loads such as piping, cableveyor, etc., when selecting a load moment

Calculation does not include the external acting force of piping, cableveyor, etc. Select load factors taking into account the external acting force of piping, cableveyor, etc.

4. Accuracy

Mechanically jointed rodless cylinders do not guarantee traveling parallelism. When accuracy in traveling parallelism and intermediate stroke position is required, please contact SMC sales representatives.

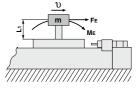
Calculation of Guide Load Factor

- 1) Maximum load mass (1), static moment (2), and dynamic moment (3) (at the time of impact with stopper) must be examined for the selection calculations.
 - * To evaluate, use Ua (average speed) for (1) and (2), and U (collision speed U = 1.4Ua) for (3). Calculate m max for (1) from the maximum load mass graph (m1, m2, m3) and M max for (2) and (3) from the maximum allowable moment graph (M1, M2, M3).

Sum of guide $\Sigma \alpha =$	Load mass [m]	Static moment [M] Note 1)	Dynamic moment [ME] Note 2)
load factors 200-	Maximum load mass [m max]	Allowable static moment [M max]	Allowable dynamic moment [ME max]

Note 1) Moment caused by the load, etc., with cylinder in resting condition

Note 2) Moment caused by the load equivalent to impact at the stroke end (at the time of impact with stopper)


Note 3) Depending on the shape of a workpiece, multiple moments may occur. When this happens, the sum of the load factors ($\Sigma \alpha$) is the total of all such moments.

2) Reference formula [Dynamic moment at the time of impact]

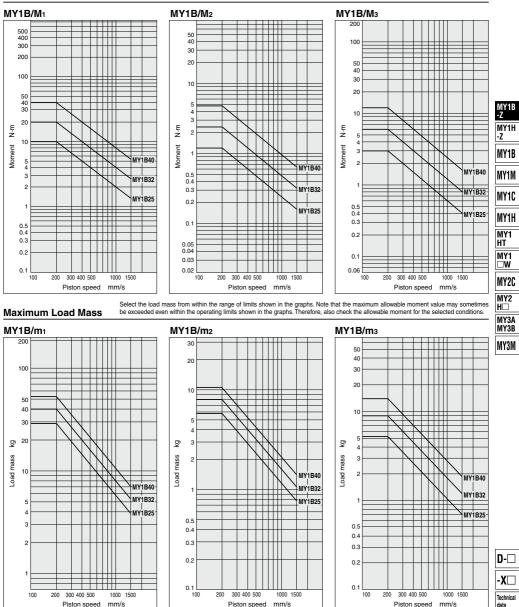
Use the following formulae to calculate dynamic moment when taking stopper impact into consideration.

- m : Load mass (kg)
- F : Load (N)
- FE : Load equivalent to impact (at the time of impact with stopper) (N)
- Ua: Average speed (mm/s)
- M : Static moment (N·m)
- $$\begin{split} \mathfrak{V} &= 1.4 \mathfrak{V} \mathbf{a} \ (\text{mm/s}) \quad \stackrel{\text{Note 4}}{\text{Fe}} = 1.4 \mathfrak{V} \mathbf{a} \cdot \delta \cdot \mathbf{m} \cdot \mathbf{g} \\ \stackrel{\text{Note 5}}{\longrightarrow} \mathbf{Me} &= \frac{1}{3} \cdot \text{Fe} \cdot \mathbf{L}_1 = 4.57 \mathfrak{V} \mathbf{a} \delta \mathbf{m} \mathbf{L}_1 \ (\text{N} \cdot \mathbf{m}) \end{split}$$

- $\upsilon~$: Collision speed (mm/s)
- $\ensuremath{\textbf{L}}_1$: Distance to the load center of gravity (m)
- ME: Dynamic moment (N·m) δ : Bumper coefficient
- With air cushion = 1/100 With shock absorber = 1/100
- g : Gravitational acceleration (9.8 m/s2)

Note 4) 1.4 $\upsilon a \delta$ is a dimensionless coefficient for calculating impact force.

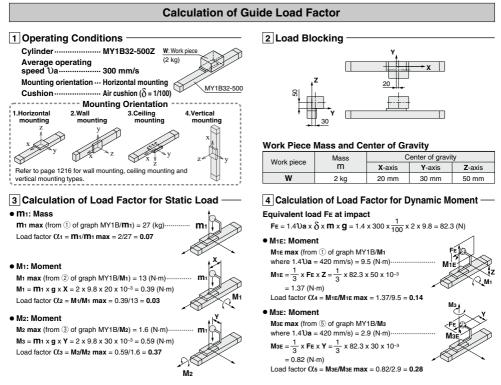
Note 5) Average load coefficient (= 1/3): For averaging the maximum load moment at the time of impact with stopper according to service life calculations.


3) For detailed selection procedures, refer to page 1174.

Maximum Allowable Moment/Maximum Load Mass

Maximum Allowable Moment

Select the moment from within the range of operating limits shown in the graphs. Note that the maximum load mass value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the load mass for the selected conditions.



@SMC

1173

Series MY1B **Model Selection**

The following is the steps for selecting the most suitable MY1B series to your application.

5 Sum and Examination of Guide Load Factors

$\Sigma \alpha = \Omega 1 + \Omega 2 + \Omega 3 + \Omega 4 + \Omega 5 = 0.89 \leq 1$

The above calculation is within the allowable value, and therefore the selected model can be used. Select a shock absorber separately. In an actual calculation, when the total sum of guide load factors $\Sigma \alpha$ in the formula above is over 1, consider either decreasing the speed, increasing the bore size, or changing the product series. This calculation can be easily made using the "SMC Pneumatics CAD System."

Series MY1B Specific Product Precautions

Be sure to read the below before handling. Refer to front matter 57 for Safety Instructions. For Actuator and Auto Switch Precautions, refer to pages 3 to 12 and the Operation Manual. The Operation Manual can be downloaded from the SMC website, http://www.smcworld.com

Selection

≜Caution

1. When using a cylinder with long strokes, implement an intermediate support.

When using a cylinder with long strokes, implement an intermediate support to prevent the tube from sagging and being deflected by vibration or an external load.

Refer to the "Guide to Side Support Application" on page 1183.

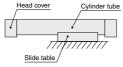
2. For intermediate stops, use a dual-side pressure control circuit.

Since the mechanically jointed rodless cylinders have a unique seal structure, slight external leakage may occur. Controlling intermediate stops with a 3-position valve cannot hold the stopping position of the slide table (slider). The speed at the restarting state also may not be controllable. Use the dualside pressure control circuit with a PAB-connected 3-position valve for intermediate stops.

3. Cautions on less frequent operation

When the cylinder is used extremely infrequently, operation may be interrupted in order for anchoring and a change lubrication to be performed or service life may be reduced.

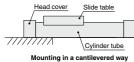
Mounting


▲Caution

- 1. Do not apply strong impacts or excessive moment to the slide table (slider).
 - Do not apply strong impacts or excessive moment, etc., when mounting workpieces.
- 2. Do not mount cylinders as they are twisted.

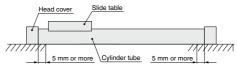
When mounting, be sure for a cylinder tube not to be twisted. The flatness of the mounting surface is not appropriate, the cylinder tube is twisted, which may cause air leakage due to the detachment of a seal belt, damage a dust seal band, and cause malfunctions.

3. Do not mount a slide table on the fixed equipment surface.


It may cause damage or malfunctions since an excessive load is applied to the bearing.

Mounting with a slide table (slider)

4. Consult SMC when mounting in a cantilevered way.


Since the cylinder body deflects, it may cause malfunctions. When using it this way, please contact SMC sales representatives

Mounting

Caution

5. Fixed parts of the cylinder on both ends must have at least 5 mm of contact between where the bottom of the cylinder tube and the equipment surface.

6. Do not generate negative pressure in the cylinder tube.

Take precautions under operating conditions in which negative pressure is generated inside the cylinder by external forces or inertial forces. Air leakage may occur due to separation of the seal belt. Do not generate negative pressure in the cylinder by forcibly moving it with an external force during the trial operation or dropping it with its own weight under the nonpressure state, etc. When the negative pressure is generated, slowly move the cylinder by hand and move the stroke back and forth. After doing so, if air leakage still occurs, please contact SMC sales representatives. MY1B -7

MY1H

Operating Environment

Marning

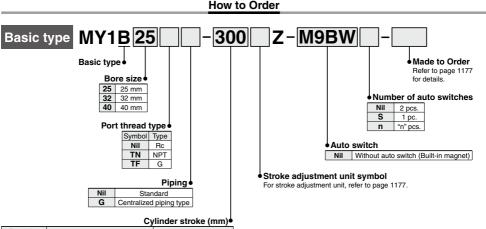
 Do not use in an environment where the cylinder is exposed to coolant, cutting oil, water drops, adhesive foreign matter, dust, etc. and avoid use with compressed air containing drainage and foreign matter.

 Foreign matter or liquids on the cylinder's interior or exterior can wash out the lubricating grease, which can lead to deterioration and damage of dust seal band and seal materials, causing a danger of malfunction.

When operating in locations with exposure to water and oil, or in dusty locations, provide protection such as a cover to prevent direct contact with the cylinder, or mount so that the dust seal band surface faces downward, and operate with clean compressed air.

2. Carry out cleaning and grease application suitable for the operating environment.

Carry out cleaning regularly when using in an operating environment in which the product is likely to get dirty.


After cleaning, be sure to apply grease to the top side of the cylinder tube and the rotating part of the dust seal band. Apply grease to these parts regularly even if not after cleaning. For cleaning of the slide table (slider) interior and grease application, please contact SMC sales representatives.

3. This product is not designed to be used in a clean room.

If you are considering using it in a clean room, please contact SMC sales representatives.

Mechanically Jointed Rodless Cylinder Basic Type Series MY1B ø25, ø32, ø40

Bore size (mm)	Standard stroke (mm)*	Maximum manufacturable stroke (mm)
25, 32, 40	100,200,300,400,500,600 700,800,900,1000,1200 1400,1600,1800,2000	5000

Strokes are manufacturable in 1 mm increments, up to the maximum stroke. However, please be advised that with stroke 49 or less, there are cases where auto switch mounting is not possible and the performance of the air cushion may decline. Also when exceeding a 2000 mm stroke, specify "-XB11" at the end of the part number. For details, refer to the Made-to-Order specifications.

Applicable Auto Switches/Refer to pages 1559 to 1673 for further information on auto switches.

		Electrical Wiring		Wiring	Ŀ	oad volta	ge	Auto switch model		Lead	wire I	ength	n (m)	Pre-wired																
Туре	Special function	entry	Indicator light	(Output)	D	с	AC	Perpendicular	In-line	0.5 (Nil)		0	5	connector	Applical	ble load														
÷				3-wire (NPN)		5 V. 12 V		M9NV	M9N		•	•	0	0	IC circuit															
switch				3-wire (PNP)		5 V, 12 V		M9PV	M9P	•	•	•	0	0																
sv				2-wire		12 V		M9BV	M9B		•	•	0	0																
auto	Disgraphic indication			3-wire (NPN)		5 V, 12 V	/ 10 //	M9NWV	M9NW		•	•	0	0	IC circuit	Delay														
	Diagnostic indication (2-color indication)	Grommet	Yes	3-wire (PNP)	24 V		-	M9PWV	M9PW	•	•	•	0	0		Relay, PLC														
state	(2-COIOT INDICATION)			2-wire	12 V 5 V. 12 V	12 V			M9BWV	M9BW		•	•	0	0		FLO													
	Water registent			3-wire (NPN)		v	M9NAV*1	M9NA*1	0	0	•	0	0	IC circuit																
Solid	Water resistant (2-color indication)																	3-wire (PNP)		5 V, 12 V		M9PAV*1	M9PA*1	0	0	•	0	0	IC circuit	
	(2-COIOT INDICATION)			2-wire		12 V		M9BAV*1	M9BA*1	0	0	•	0	0	Ι															
Reed auto switch			Yes	3-wire (NPN equivalent)	_	5 V	-	A96V	A96	•	-	•	_	—	IC circuit	—														
to s		Grommet		Quuino	24 V	12 V	100 V	A93V*2	A93	•	•	•	•	—		Relay,														
au			No	2-wire	24 V	12 V	100 V or less	A90V	A90	۲	—	۲	—	—	IC circuit	PLC														

*1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.

Consult with SMC regarding water resistant types with the above model numbers.

*2 1 m type lead wire is only applicable to D-A93.

* Lead wire length symbols: 0.5 m Nil (Example) M9NW * Solid state auto switches marked with "O" are produced upon receipt of order.

1 m M (Example) M9NWM

- 3 m L (Example) M9NWL
- 5 m ······· Z (Example) M9NWZ

* There are other applicable auto switches other than the listed above. For details, refer to page 1185.

* For details about auto switches with pre-wired connector, refer to pages 1626 and 1627

* Auto switches are shipped together, (but not assembled).

Mechanically Jointed Rodless Cylinder Basic Type Series MY1B

32

Air

Double acting 0.1 to 0.8 MPa

1.2 MPa

5 to 60°C

Air cushion

Non-lube

Bc1/8

ø6

Note 1) Be aware that when the stroke adjustment range is increased with the adjustment bolt,

Note 4) Due to the construction of this product, it may have more fluctuation in operating speed

on page 1179, the piston speed should be 100 to 200 mm/s. Note 2) The piston speed is 100 to 1000 mm/s for centralized piping.

Note 3) Use at a speed within the absorption capacity range. Refer to page 1179.

the air cushion capacity decreases. Also, when exceeding the air cushion stroke ranges

compared to a rod type air cylinder. For applications that require constant speed, select

2700 or less^{+1.8}, 2701 to 5000^{+2.8}

40

Bc1/4

ø8

25 to 40

100 to 1000 mm/s

100 to 1000 mm/s Note 1)

100 to 1500 mm/s Note 2)

25

_	(,
Made to	Made to Order: Individual Specifications
Order	(For details, refer to page 1186.)

	(For details, refer to page 1186.)
Symbol	Specifications
-X168	Helical insert thread

Made to Order

(For details, refer to pages 1699 and 1818.)

Symbol	Specifications
-XB11	Long stroke
-XB22	Shock absorber/ soft type RJ series mounted

*For details about Copper/Fluorine-free Specifications, refer to the SMC website.

Stroke Adjustment Unit Enseifiestions

Stroke Adju	stment Unit Sp	ecificatio	าร							
Bore	size (mm)		25			32			40	
Unit symbo	I	A	L	Н	A	L	Н	A	L	Н
Configuration Shock abso		With adjustment bolt		RB1412 + with adjustment bolt	With adjustment bolt	RB1412 + with adjustment bolt		With adjustment bolt		RB2015 + with adjustment bolt
Stroke adjustment	Without Spacer		0 to -11.5			0 to -12			0 to -16	
	With short spacer	-11.5 to -23			-12 to -24			-16 to -32		
fixing spacer (mm)	With long spacer		-23 to -34.5 -24 to -36						-32 to -48	

Specifications Bore size (mm)

Operating pressure range Proof pressure

Stroke length tolerance

Piston Speed

adjustment unit

Ambient and fluid temperature

Without stroke adjustment unit

Front/Side port

Bore size (mm)

A unit

L unit, H unit

the equipment corresponding to the required level.

Bottom port

Fluid

Action

Cushion

Lubrication

Piping port size

Stroke

* Stroke adjustment range is applicable for one side when mounted on a cylinder.

Stroke Adjustment Unit Symbol

		Right side stroke adjustment unit										
			Without	A:With	adjustme	nt bolt		ow load s r + Adjust			nigh load r + Adjust	
			unit			With long spacer			With long spacer			With long spacer
ij	Wit	hout unit	Nil	SA	SA6	SA7	SL	SL6	SL7	SH	SH6	SH7
t		djustment bolt	AS	Α	AA6	AA7	AL	AL6	AL7	AH	AH6	AH7
ustmen		With short spacer	A6S	A6A	A6	A6A7	A6L	A6L6	A6L7	A6H	A6H6	A6H7
ustr		With long spacer	A7S	A7A	A7A6	A7	A7L	A7L6	A7L7	A7H	A7H6	A7H7
adj	L:With low lo	ad shock absorber +	LS	LA	LA6	LA7	L	LL6	LL7	LH	LH6	LH7
ke	Adjustment	With short spacer	L6S	L6A	L6A6	L6A7	L6L	L6	L6L7	L6H	L6H6	L6H7
stro	bolt	With long spacer	L7S	L7A	L7A6	L7A7	L7L	L7L6	L7	L7H	L7H6	L7H7
de	H:With high le	oad shock absorber +	HS	HA	HA6	HA7	HL	HL6	HL7	Н	HH6	HH7
ft si	Adjustment	With short spacer	H6S	H6A	H6A6	H6A7	H6L	H6L6	H6L7	H6H	H6	H6H7
Ľ	bolt	With long spacer	H7S	H7A	H7A6	H7A7	H7L	H7L6	H7L7	H7H	H7H6	H7

* Spacers are used to fix the stroke adjustment unit an intermediate stroke position

Shock Absorber Model for L and H Units

Type	Stroke	Bore size (mm)				
туре	adjustment unit	25	32	40		
Standard	n dovd L		RB1412			
Stanuaru	Н	RB1412	RB2	2015		
Shock absorber/	L	RJ1007H	RJ14	112H		
soft type (-XB22)	Н	RJ1412H	_	—		

Shock Absorber Specifications

Mo	odel	RB1007	RB1412	RB2015			
Max. energy	absorption (J)	5.9	19.6	58.8			
Stroke abso	rption (mm)	7	12	15			
Max. collision speed (mm/s)		1500	1500	1500			
Max. operating fre	equency (cycle/min)	70	45	25			
Spring force	Extended	4.22	6.86	8.34			
(N)	Retracted	6.86	15.98	20.50			
Operating temp	erature range (°C)		5 to 60				

Note) The shock absorber service life is different from that of the MY1B cylinder depending on the operating conditions. Allowable operating cycles under the specifications prescribed in our catalog are shown below.

RB0806 1.2 million cycles

2 million cycles RB1007 to RB2015

Note) Specified service life (suitable replacement period) is the value at room temperature (20 to 25°C). The period may vary depending on the temperature and other conditions. In some cases the absorber may need to be replaced before the allowable operating cycles above.

D- □
-X□
Technical
data
uala

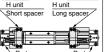
MY1M MY1C MY1H MY1 ΗТ MY1 W MY2C MY2 H MY3A MY3B MY3M

MY1B -7

MY1H

MY1B

-7


	fixing spacer
	×
	\square
opacer i	
1ºn	04

Intermediate

Stroke adjustment unit mounting diagram

Stroke adjustment unit

	ength
Example of H	6H7 attachment
Left side	Right side

Port

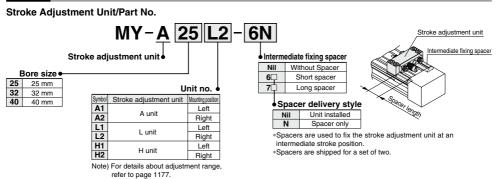
1177

Theoretical Output

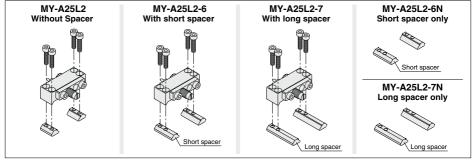
								Unit: N
Bore size	Piston area		0	peratin	g press	ure (MF	Pa)	
(mm)	(mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8
25	490	98	147	196	245	294	343	392
32	804	161	241	322	402	483	563	643
40	1256	251	377	502	628	754	879	1005

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Weight


Unit: kg								
Bore size	Additional Basic weight per		Side support weight (per set)	Stroke adjustment unit weight (per unit)				
(mm)	weight	50 mm of stroke	A/B type weight	A unit weight	L unit weight	H unit weight		
25	1.14	0.11	0.02	0.06	0.10	0.18		
32	2.28	0.17	0.02	0.12	0.21	0.40		
40	3.11	0.25	0.04	0.23	0.32	0.49		
Caladia	Oslaulations (Europela) MV1B2E 200A7							

Calculation: (Example) MY1B25-300AZ


Basic weight	1.14 kg
Cylinder stroke	300 mm stroke
Additional weight	0.11 kg/50 mm stroke
A unit weight	0.06 kg

1.14 + 0.11 x 300 ÷ 50 + 0.06 x 2 ≈ 1.92 kg

Options

Component Parts

Side Support/Part No.

Type Bore size (mm)	25	32	40
Side support A	MY-S25A		MY-S32A
Side support B	MY-S25B		MY-S32B

For details about the dimensions, etc., refer to page 1183. Side supports consist of a set of right and left supports.

Cushion Capacity

Cushion Selection

<Air cushion>

Air cushions are a standard feature on mechanically jointed rodless cylinders.

The air cushion mechanism is incorporated to prevent excessive impact of the piston with high kinetic energy at the stroke end. The purpose of air cushion, thus, is not to decelerate the piston near the stroke end.

The ranges of load and speed that air cushions can absorb are within the air cushion limit lines shown in the graphs.

<Stroke adjustment unit with shock absorber>

Use this unit when operating with a load and speed exceeding the air cushion limit line, or when cushioning is required outside of the effective air cushion stroke range due to stroke adjustment.

L unit

Use this unit when cushioning is necessary outside of the effective air cushion range even if the load and speed are within the air cushion limit line, or when the cylinder is operated in a load and speed range above the air cushion limit line and below the L unit limit line.

H unit

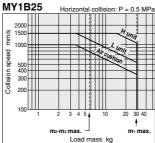
Use this unit when the cylinder is operated in a load and speed range above the L unit limit line and below the H unit limit line.

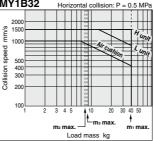
<Fastening of unit>

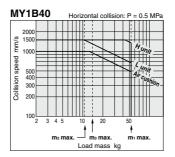
The unit can be secured by evenly tightening the four unit holding bolts.

<Stroke adjustment with adjustment bolt> Loosen the adjustment bolt lock nut, and adjust

the stroke from the lock plate side using a hexagon wrench. Retighten the lock nut.


<Stroke adjustment with shock absorber> Loosen the two lock plate holding bolts, turn the shock absorber and adjust the stroke. Then, uniformly tighten the lock plate holding bolts to secure the shock absorber


Take care not to over-tighten the holding bolts. (Refer to the "Tightening Torque for Stroke Adjustment Unit Lock Plate Holding Bolts.")

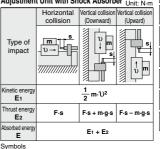

(Note)

Although the lock plate may slightly bend due to tightening of the lock plate holding bolt, this does not a affect the shock absorber and locking function.

Absorption Capacity of Air Cushion and Stroke Adjustment Units

Air Cushion Stroke Unit: mm Bore size (mm) Cushion stroke

25	15
32	19
40	24


Tightening Torgue for Stroke Adjustment Unit Holding Bolts Linit: N.m

·····		Onit. Noni
Bore size (mm)	Unit	Tightening torque
	A	
25	L	3.5
	Н	
	A	
32	L	5.8
	н	
	A	
40	L	13.8
	н	

Tightening Torgue for Stroke Adjustment

Unit Lock Plate Holding Bolts Unit: N·m						
Bore size (mm)	Bore size (mm) Unit Tightening to					
25	L	1.2				
	Н	3.3				
32	L	3.3	M)			
32	Н	10				
40	L	3.3	1 M Y			
	Н	10				

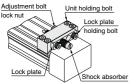
Calculation of Absorbed Energy for Stroke Adjustment Unit with Shock Absorber Unit: N.m.

U: Speed of impact object (m/s)

F: Cylinder thrust (N)

Shock absorber stroke (m) S:

m: Mass of impact object (kg)

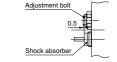

g: Gravitational acceleration (9.8 m/s2)

Note) The speed of the impact object is measured at the time of impact with the shock absorber.

🗥 Caution

1. Use caution not to get your hands caught in the unit.

. When using a product with stroke adjustment unit, the space between the slide table (slider) and the stroke adjustment unit becomes narrow at the stroke end, causing a danger of hands getting caught. Install a protective cover to prevent direct contact with the human body.


2. Do not operate with the stroke adjustment unit fixed in an intermediate position.

When the stroke adjustment unit is fixed in an intermediate position, slippage can occur depending on the amount of energy released at the time of an impact. In such cases, the use of the holder mounting brackets for adjustment, available per made-to-order "-X416" and "-X417", is recommended.

For other lengths, please consult with SMC. (Refer to the "Tightening Torque for Stroke Adjustment Unit Holding Bolts.")

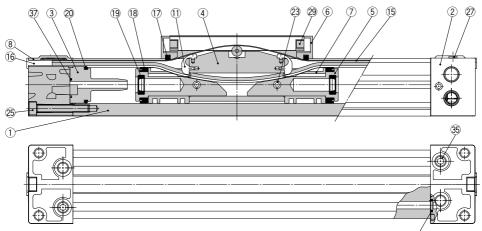
@SMC

3. Refer to the below figure when using the adjustment bolt to perform stroke adjustment. When the effective stroke of the shock absorber decreases as a result of stroke adjustment, the absorption capacity decreases dramatically. Secure the adjustment bolt at the position where it protrudes approximately 0.5 mm from the shock absorber.

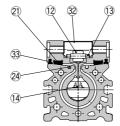
4. Do not use a shock absorber together with air cushion.

D-

-X 🗆

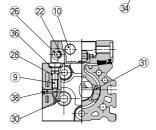

Technical

data


MY1B32 Horizontal collision: P = 0.5 MPa

Construction ø25, ø32, ø40

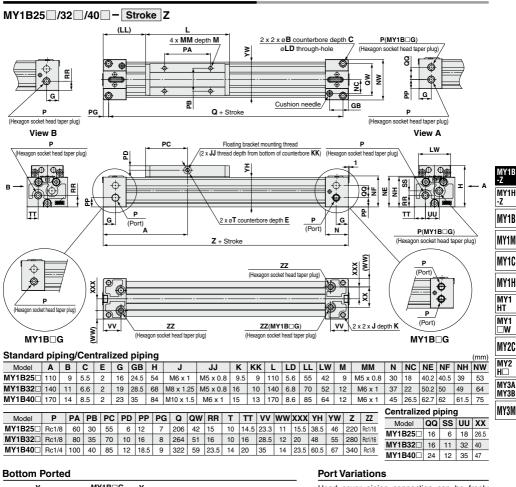
MY1B25 to 40



SMC

Component Parts

No.	Description	Material	Qty.	Note
1	Cylinder tube	Aluminum alloy	1	Hard anodized
2	Head cover	Aluminum alloy	2	Painted
3	Cushion boss	Polyacetal	2	
4	Piston yoke	Aluminum alloy	1	Anodized
5	Piston	Aluminum alloy	2	Chromated
6	End cover	Polyacetal	2	
7	Wear ring	Polyacetal	2	
8	Head plate	Stainless steel	2	
9	Cushion needle	Rolled steel	2	Nickel plated
10	Stopper	Carbon steel	4	Nickel plated
11	Belt separator	Polyacetal	2	
12	Guide roller	Polyacetal	1	
13	Parallel pin	Carbon steel	1	
16	Belt clamp	Polybutylene terephthalate	2	
21	Bearing	Polyacetal	2	


No.	Description	Material	Qty.	Note
22	Spacer	Stainless steel	4	
23	Spring pin	Carbon tool steel	2	
24	Seal magnet	Rubber magnet	2	
25	Hexagon socket head cap screw	Chromium molybdenum steel	6	Chromated
26	Hexagon socket button head screw	Chromium molybdenum steel	4	Chromated
27	Thin head screw	Chromium molybdenum steel	4	Chromated
29	Double round parallel key	Carbon steel	2	
30	Hexagon socket head taper plug	Carbon steel	4	Chromated (Centralized piping: 7pcs.)
31	Magnet	Rare earth magnet	2	
32	Top cover	Stainless steel	1	
35	Hexagon socket head taper plug	Carbon steel	2	Chromated (Centralized piping: 3 pcs.)
36	Type CR retaining ring	Spring steel	2	
38	Steel ball	Spring steel	2	


Seal List

Sea	Seal List						
No.	Description	Material	Qty.	MY1B25	MY1B32	MY1B40	
14	Seal belt	Urethane/Polyamide	1	MY25-16C-Stroke	MY32-16C-Stroke	MY40-16A-Stroke	
15	Dust seal band	Stainless steel	1	MY1B25-16B-Stroke	MY1B32-16B-Stroke	MY1B40-16B-Stroke	
33	Side scraper	Polyamide	2	MYB25-15BA5900B	MYB32-15BA5901B	MYB40-15BA5902B	
	a ::	NBR	2	KA00311	KA00320	KA00320	
28	O-ring			(ø5.1 × ø3 × ø1.05)	(ø7.15 × ø3.75× ø1.7)	(ø7.15 × ø3.75 × ø1.7)	
37	Cushion boss gasket	NBR	2	MYB25-16GA5900	MYB32-16GA5901	MYB40-16GA5902	
17	Scraper	NBR	2				
18	Piston seal	NBR	2	2			
19	Cushion seal	NBR	2	MY1B25-PS	MY1B32-PS	MY1B40-PS	
20	Tube gasket	NBR	2				
34	O-ring	NBR	2				

- * Seal kit includes 17, 18, 19, 20 and 34. Order the seal kit based on each bore size.
- * Seal kit includes a grease pack (10 g). When (4) and (5) are shipped independently, a grease pack is included. (10 g/1000 mm stroke) Order with the following part number when only the grease pack is needed. Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)
- Note) For the replacement procedure of replacement parts/seals, refer to the Operation Manual.

Standard/Centralized Piping Type Ø25, Ø32, Ø40

MY1B40 47

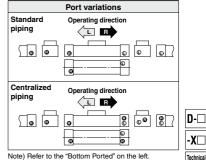
đ

XXX

O-ring

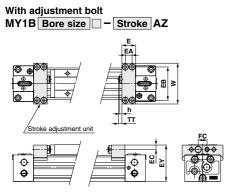
Piping tube

Centralized piping

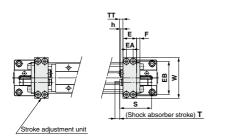


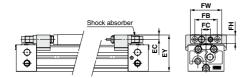
@SMC

6

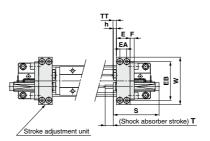

(mm)

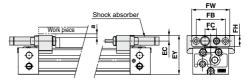
Head cover piping connection can be freely selected to best suit different piping conditions.


data


Stroke Adjustment Units

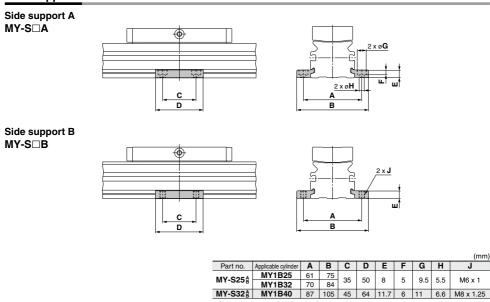
									(mm)
Applicable cylinder	Е	EA	EB	EC	EY	FC	h	TT	W
MY1B25□	20	10	49	6.5	53.5	13	3.5	5 (Max. 16.5)	60
MY1B32	25	12	61	8.5	67	17	4.5	8 (Max. 20)	74
MY1B40□	31	15	76	9.5	81.5	17	4.5	9 (Max. 25)	94


With low load shock absorber + adjustment bolt MY1B Bore size - Stroke LZ



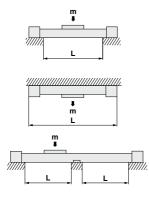
												(mm)
Applicable cylinder	Е	EA	EB	EC	EY	F		F	в	FC	FH	FW
MY1B25	20	10	49	6.5	53.5	6		3	3	13	12	46
MY1B32	25	12	61	8.5	67	6		4	3	17	16	56
MY1B40□	31	15	76	9.5	81.5	6		4	3	17	16	56
Applicable cylinder	h	S	Т		TT		١	N	Sł	lock ab	sorber	model
MY1B25	3.5	46.7	7	5 (M	ax. 16	.5)	6	60		RE	31007	
MY1B32	4.5	67.3	12	8 (N	/lax. 20	D)	7	'4		RE	31412	
MY1B40□	4.5	67.3	12	9 (N	/ax. 28	5)	ç	4		R	31412	
							_	_	-			

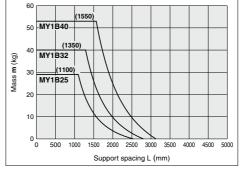
With high load shock absorber + adjustment bolt MY1B Bore size - Stroke HZ


Since the EY dimension of H unit is greater than the table top height (H dimension), when a work piece exceeding the full length (L dimension) of the slide table is mounted, allow a clearance of size "a" or larger at the work piece side.

										(11111)
Applicable cylinder	Е	EA	EB	EC	EY	F	FB	FC	FH	FW
MY1B25	20	10	57	8.5	57.5	6	43	17	16	56
MY1B32	25	12	74	11.5	73	8	57	22	22	74
MY1B40□	31	15	82	12	87	8	57	22	22	74
			-	-						
Applicable cylinder	h	S	т	т	т	w	Shock	absorbe	r model	а
MY1B25	4.5	67.3	12	5 (Ma)	c. 16.5)	70	F	RB141	2	4.5
MY1B32	5.5	73.2	15	8 (Ma	ıx. 20)	90	F	RB201	5	6
MY1B40□	5.5	73.2	15	9 (Ma		100	-	RB201	-	4

Mechanically Jointed Rodless Cylinder Basic Type Series MY1B


Side Supports



* Side supports consist of a set of right and left supports.

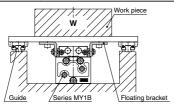
Guide to Side Support Application

For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load. In such a case, use a side support in the middle section. The spacing (L) of the support must be no more than the values shown in the below graph.

∧Caution

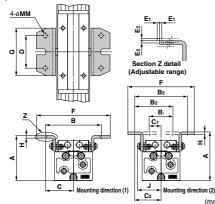
- 1. If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting it. Also, for long stroke operation involving vibration and impact, use of a side support is recommended.
- 2. Support brackets are not for mounting; use them solely for providing support.

(mm)


MY1B -7

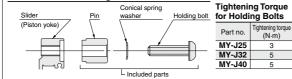
Floating Brackets MY -J25/MY -J32/MY -J40

Facilitates connection to other guide systems.


L Type

Application Example

Mounting dimension


One set of brackets can be mounted in two directions for compact combinations.

Part no.	Applicable		С	ommo	on		Mour	nting c	lirectio	on (1)
Part no.	cylinder	D	G	н	J	MM	Α	В	С	F
MY-J25	MY1B25	40	60	3.2	35	5.5	63	78	39	100
MY-J32	MY1B32	55	80	4.5	40	6.5	76	94	47	124
MY-J40	MY1B40□	74	100	4.5	47	6.5	92	112	56	144
Port no	Applicable		Mo	ountin	g dire	ction	(2)		Adjustat	ole range
Part no.	Applicable cylinder	A	Мо В1	buntin B2	g dire B3	ction C1	(2) C2	F	Adjustat E1	ble range E2
Part no.	cylinder	A 65					<u> </u>	F 96		
MY-J25	cylinder		B1	B ₂	B3	C1	C2	· ·		
MY-J25 MY-J32	cylinder MY1B25	65	B 1 28	B 2 53	B3 78	C 1 14	C 2 39	96		1

Note) Floating brackets consist of a set of right and left bracket.

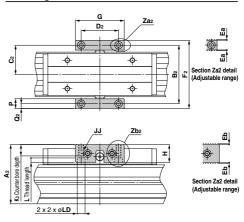
Installation of Holding Bolts

Floating Bracket Operating Precautions

A Caution

When connecting to a load which has an external guide mechanism, use a discrepancy absorption mechanism.

(mm)


Mount the external guide mounting brackets and floating brackets in a place where the required degree of freedom for the floating Y and Z axes can be secured. The thrust transmission area of the floating bracket must be fixed so that it does not partially contact with the body.

* Confirm the "Coordinates and Moments" in Model Selection on page 1215 for details of floating Y and Z axes.

Application Example Work piece Ŵ \odot 5 Series MY1B Floating bracket Guide

Mounting dimension

Block Type

										(mm)
Part no.	Applicable	G	н	J			Р	LD	Adjustab	le range
Part no.	cylinder	G	п	J	J	L	F	LD	Ea	Eb
MYAJ25	MY1B25	55	22	M6	x 1	5.5	12	9.5	1	1
MYAJ32	MY1B32	60	22	M6	x 1	5.5	12	9.5	1	1
MYAJ40	MY1B40□	72	32	M8 x	1.25	6.5	16	11	1	1
Part no.	Applicable cylinder	A 2	B2	C2	D2	F2	K2	Q2		
MYAJ25	MY1B25	63	61	30.5	40	73	14	6		
MYAJ32	MY1B32	73	72	36	46	84	14	6		
MYAJ40	MY1B40□	93.5	88	44	55	104	19	8		

MY -. 125 to 40 (1 set) Component Parts

WIT -J25 10	40 (1 set) Compo	nem	raits
Description	Material	Qty.	Note
Bracket	Rolled steel	2	Nickel plated
Pin	Carbon steel	2	Nickel plated
Conical spring washer	Carbon steel	2	Nickel plated
Holding bolt	Chromium molybdenum steel	2	Nickel plated

Series MY1B Auto Switch Mounting

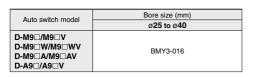
Auto Switch Proper Mounting Position (Detection at Stroke End)

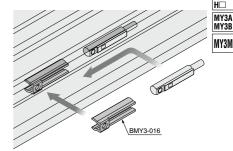
MY1B (Basic type) ø25 to ø40

Auto Switch Proper Mounting Position (mm)

Auto switch model	D-M9 D-M9 V D-M9 WV D-M9 WV D-M9 A D-M9 AV	D-A9□ D-A9□V
Bore size	Α	Α
25	83	79
32	116.5	112.5
40	137.5	133.5

Note) Adjust the auto switch after confirming the operating conditions in the actual setting.


Operating Range


MY1B (Basic type)

Auto autobalo associat	Bore size						
Auto switch model	25	32	40				
D-M9□/M9□V D-M9□W/M9□WV D-M9□A/M9□AV	5.0	5.5	5.5				
D-A9□/A9□V	7.0	10.0	9.0				

Note) Values which include hysteresis are for guideline purposes only, they are not a guarantee (assuming approximately 30% dispersion) and may change substantially depending on the ambient environment.

Auto Switch Mounting Bracket/Part No.

Other than t	he applicable auto switches listed in "How to Order", the following auto switches are mountable
Normally close With pre-wired	ed (NC = b contact) solid state auto switches (D-F9G/F9H) are also available. For details, refer to page 1577. connector is also available for solid state auto switches. For details, refer to pages 1626 and 1627.

(mm)

MY1B -7

MY1H -Z

MY1B

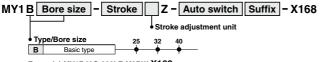
MY1M MY1C MY1H MY1 HT

MY1

⊡w My2C

MY2

Series MY1B Made to Order: Individual Specifications


Please contact SMC for detailed dimensions, specifications, and lead times.

1 Helical Insert Thread

Symbol -X168

Helical insert thread is used for the slide table mounting thread, the thread size is the same as the standard model.

Example) MY1B40G-300LZ-M9BW-X168