Power Valve Precision Regulator Series VEX1 33

High precision, large capacity relief regulator

A 3 port large exhaust capacity pressure reducing valve which utilizes a nozzle flapper mechanism available as air operated or manual styles.

Precise pressure setting

Having a relief Cv value that is similar to the supply Cv value, this regulator responds quickly in order to set a precise outlet pressure even when the outlet volume and the pressure fluctuations are large.

High precision

This regulator is well-suited for balancer applications because it minimizes pressure fluctuations with its large-volume supply/exhaust capability, in addition it features high precision F.S. (full span) sensitivity within 0.2% and F.S. repeatability of $\pm 0.5\%$.

Rich line-up

Manifold capable VVEXB 1/8—Up to 10 stations VVEX2 1/4—Up to 8 stations

Minimum size VEX1^A 33

 Non-grease only for VEX1^A_B33
Seal materials (NBR, FKM) only for VEX1^A_B33

Port sizes available from M5 to 2 inches, most flow rates and pipes can be accommodated.

Manual handle type

Air operated type

Application Example

Relief Type Regulator

Precise internal tank pressure setting

 Large effective areas of both supply and exhaust sides make it possible to precisely set large-flow internal tank pressure.

Accurate Pressure Setting

Sensitivity within 0.2% F.S. (Full span) Tension control

VY1

VBA VBAT AP100

Contact Pressure Control

 Pressure is kept steady, responding rapidly to the position change of the piston in the cylinder.

Load Balance (With superior repeatability)

Within ±0.5% F.S. (Full span) Manifold

- Accurate balance pressure setting and superior repeatability prevent actuating play in the cylinder, and make the stop precision steady.
- Manifold can be mounted to VEX1B33, VEX123⁰₃.

Balance and Drive

Accurate balance pressure setting

 Pressure changes during cylinder actuation are suppressed, balancing the cylinder in both static and dynamic conditions.

∕ SMC

Series VEX1 3⁹

Specifications

Model		VEX1A	33- ^{M5} ₀₁	VEX1E	33- ^{M5} ₀₁	VEX11	13 ⁰⁻⁰¹ 3 ⁰⁻⁰²	VEX1	23 ⁰ -01 3-02	VEX	133 ⁰ -03	VE	X153	04 -06 10	VEX17	73 ⁰ -10 3 ⁻¹²	VEX1	93 ⁰ - ¹⁴ 3 ⁰ -20
Operation		Manual	(Push loo	king slott	ed type)		Man	ual han	dle (Pu	ish loo	king sl	otted 1	ype) a	and A	Air opera	ated typ	ре	
Pilot	Internal pilot (External pilot can be switched. * Refer to "How to Switch to External Pilot" on page 745.																	
Fluid		Refer	to Appl	icable F	-luids.							Air						
Supply pressure						(\$	Set pre ∆Cau	essure	+ 0.1 Refer	MPa) to "P	to Ma recaut	<. 1 N ons".	1Pa					
Setting pressure r	range	0	.01 to 0).7 MPa	1						0.05 to	0.7 N	Pa					
Ambient temperat	ure (1)					0 to 60°C												
Fluid temperature	(1)	0 to 0 to	060°C (99°C (\	VEX1å ∕EX1å3	33) 3B)	0° 00 of 0												
Repeatability		Within ±0.5% F.S. (Full span)																
Sensitivity		Within 0.2% F.S. (Full span)																
Air consumption	2)	9.5 L/min (ANR) (at supply pressure 1.0 MPa)																
Mounting		Free																
	Port	M5	01	M5	01	01	02	01	02	02	03 04	04	06	10	10	12	14	20
B . 1 . 1	1(P)														4		11/	
Port size	2(A)	M5	1/8	M5	1/8	1/8	1/4	1/8	1/4	$ 1/_{4} $	3/8 1/	$\frac{1}{2}$	3/4	1	1	1 ¹ /4	1/2	2
	3(R)														$1^{1}/_{4}$		2	
Weight (kg)		0.1	15	0.1	8 (4)	0.	2		0.3(4)		0.5		1.4		2	2	4	1

Note 1) No condensation.

Note 2) Large amount of air is exhausted all the time. Note 3) Applicable only to air operated type. Note 4) With sub-plate. Note 5) Non-lubricated specifications are not available for valve sizes 1 to 9.

Applicable Fluids

Model	VEX1 ^A B33 (Seal material: NBR seals)	VEX1 _B 33 <u>B</u> (Seal material: FKM seals)
Fluid	Air (Normal, Dry)	High temp. air (Max. 99°C)

Symbol

Power Valve/Precision Regulator Series VEX1 $\square 3^{o}_{3}$

Option⁽²⁾

		Part no.							
Description	VEX1A33	VEX1B33	VEX1133	VEX1233	VEX1333	VEX1533	VEX1733	VEX1933	
Bracket (With bolt and washer)	В	VEX1-18-1A		VEX1-18-1A		VEX3-32A	VEX5-32A	VEX7-32A	VEX9-32A
Foot (With bolt and washer)	F	VEX1-18-2A		VEX1-18-2A					
Pressure gauge (3) G		G27-10-R1-X207		G27-10-01		G36-10-01	G46-10-01		
Silencer for bleed port (PE)	AN120-M5								

Note 1) Not conforming to ISO1179-1.

Note 2) The optional parts are shipped in the same package

Note 3) If a pressure gauge other than that which is indicated in the option table is to be used, also enter the part number of the pressure gauge. Refer to the pressure gauge guide in Best Pneumatics No. 6 for details.

Example: VEX1333-03

G36-4-01

Series VEX1 3⁰/₃

Sub-plate/Base Gasket Part No.

Valve body size	В	2
Sub-plate	VEXB-2- Port size Symbol Port size A M5 B 1/8 VEXB-2- P Thread type Symbol Thread type Nil Rc F G Note N NPT T NPTF	VEX1-9-1 P Port size Thread type Symbol Port size A 1/8 B 1/4 N NPT T NPTF T NPTF
Base gasket	VEXB-4 Seal material Symbol Seal material Nil NBR seals B FKM seals	VEX1-11-2

Note) Not conforming to ISO1179-1.

Series VEX1033 Manifold Specifications

Specifications

4

6 8

10

14 16 18 20 22 24

Handle rotation (Cycles)

0 2

Series VEX1 3⁰

Flow Characteristics

0.5

0.4

0.3

0.2

L/min(ANR) 1(P)→2(A) Flow (Pressure reducing supply)

Pressure Characteristics

VEX1A33, VEX1B33

10000 5000

3(R)←2(A)

(Relief exhaust)

∕⊘SMC

Port 1(P) pressure: 0.7 MPa, Port 2(A) pressure: 0.2 MPa, Flow: 0 L/min (ANR)

Construction/Working Principle

VEX1A33, VEX1B33

When set-handle (9) is turned clockwise, the force generated by set spring (1) causes flapper (3) to close nozzle (3), allowing the nozzle back pressure to be applied to the right surface of top diaphragm (3). Then, valve (6) moves to the left, allowing the supply air to flow from port 1(P) to port 2(A). The air pressure that has flowed in is applied to the left surface of top diaphragm (3) and counteracts the force generated by the nozzle back pressure; at the same time, it is applied to the left surface of diaphragm (1), and balances with the set pressure that counteracts the compression force of set spring (10).

When the outlet pressure increases higher than the set pressure, it pushes diaphragm ① towards the right, and the pressure at the right side of top diaphragm ③ decreases, causing top diaphragm ③ to move to the right. Then, valve ⑥ moves away from the left surface of top diaphragm ③, the outlet pressure flows from port 2(A) via the valve hollow and is discharged through port 3(R) (atmosphere). If set handle ④ is turned conterclockwise, the movement will be the opposite, the outlet pressure indicate will decrease, and will balance with a newly set pressure.

Component Parts

No.	Description	Material
1	Body	Zinc alloy die-casted
2	Bonnet	Aluminum alloy die-casted
3	Upper diaphragm	NBR/FKM
4	Spring	Stainless steel
5	Valve guide	Stainless steel
6	Valve	NBR/FKM
7	Retainer	Resin
8	Lower diaphragm	NBR/FKM

Replacement Parts

No.	Description	Part no.				
9	Handle	VBA1-10				

When set-handle O is turned clockwise, the force generated by set spring O causes flapper O to close nozzle O, allowing the nozzle back pressure to be applied to the top of piston O. Then, via shaft O, poppet valve (supply air) O opens, allowing the supply air to flow from port 1(P) to port 2(A). The air pressure that has flowed in is applied to the bottom surface of piston O and the supple air to flow from port 1(P) to port 2(A). The air the set pressure that conteracts the force generated by the nozzle back pressure; at the same time, it is applied to the bottom surface of diaphragm O, and balances with the set pressure that conteracts the corpression force of set spring O.

When the outlet pressure increases higher than the set pressure, it pushes the diaphragm ① upward, the pressure at the top surface of piston ③ decreases, causes piston ③ to move upward, opens poppet valve (exhaust) ⑤ via shaft ⑦, and is discharged through port 3(R) to the atmosphere. If set-handle ④ is turned counterclockwise (if the set pressure of the pressure-reducing valve connetcted to the signal port is decreased), the movement will be the opposite; the outlet pressure will decrease and balance with a newly set pressure.

Note) Those indicated in parentheses are for the air operated type.

Con	Component Parts						
No.	Description	Material					
1	Body	Aluminum alloy die-casted					
2	Bonnet	Aluminum alloy die-casted					
3	Regulating piston	Aluminum alloy					
4	Spring	Stainless steel					
5	Valve guide	Aluminum alloy					
6	Poppet valve	NBR					
7	Shaft	Stainless steel					
8	Valve guide	Aluminum alloy					

Replacement Parts

No.	Description	Part no.				
9	Handle	VBA1-10				

ARJ

AR425

to 935

ARX

AMR

ARM

ARP

IR

IRV

VEX

SRH

SRP

SRF

VCHR

ITV

IC

ITVX

PVO

VEF

VEP

VER

VEA

VY1

VBA

VBAT

Series VEX1 3⁹

Body Ported

...

VEX1A33-M5, 01

Note) () are the dimensions of "M5".

52

Pressure gauge (Option) G27-10-01

Air operated type

Power Valve/Precision Regulator Series VEX1 $\square 3^{o}_{3}$

Power Valve/Precision Regulator Series VEX1 $\square 3^{o}_{3}$

SMC

Series VEX1 3⁰

Manifold: VVEXB-D-D-01

Applicable valve: VEX1B33

Valve mounting side

SMC

L Dime	nsion				L1 = 31n + 25, L2 = 31n + 12 n: Station				
Symbol	2	3	4	5	6	7	8	9	10
L1	87	118	149	180	211	242	273	304	335
L ₂	74	105	136	167	198	229	260	291	322

Power Valve/Precision Regulator Series VEX1

	E Dinne			21-0							
Symbol n 2		3	4	5	6	7	8				
	L1	91	122	153	184	215	246	277			
	L2	76	107	138	169	200	231	262			

Series VEX1 3⁰

APrecautions

Be sure to read before handling. Refer to front matter 43 for Safety | Instructions and pages 365 to 369 for Precautions on every series.

Operating Fluid

▲ Caution

- If drainage or debris is present in the supply pressure line, the fixed orifice becomes clogged, resulting in a malfunction. Therefore, in addition to the air filter (SMC's AF series), make sure to use a mist separator (SMC's AM, AFM series). Concerning the quality of the operating air, refer to SMC's the air preparation equipment selection guide (pages 2 and 3).
- Make sure to perform a maintenance periodically on air filter and mist separator (by discharging the drain and cleaning a filter element or replacing with new one).
- Never use a lubricator on the supply side with the internal pilot remaining in place, doing so will cause the fixed orifice to become clogged, invariably leading to a malfunction.
- 4. When lubrication to terminal device is required: Connect a lubricator on the supply [port 1(P)] side using the external pilot type. Use mist separator passage on the pilot air [port P1] side.
- Use a supply pressure in the recommended range (the range indicated in the diagram below).

VEX1A33, VEX1B33

VEX113³, VEX123³, VEX133³ VEX153³, VEX173³, VEX193³

756

Piping

 Use the flow characteristics on page 748 as reference to select a regulator size so that the required flow rates on the reduced pressure supply and relief exhaust sides have sufficient allowances.

If the reduced pressure supply and relief exhaust that may cause extreme changes in flow rate are repeated (main value is fully opened and closed repeatedly), the nozzle flapper is deformed. This may cause the pressure set value to deviate or the diaphragm to break early. So, do not use under such conditions.

▲ Caution

 Tightening the fittings and their torque When screwing fittings into the valve, make sure to tighten them to the proper torque values given below.

Tightening Torque when Piping

Applicable torque (N·m)
Approx. 1/6 rotation after manual tightening
7 to 9
12 to 14
22 to 24
28 to 30
28 to 30
36 to 38
40 to 42
48 to 50
48 to 50

 Ordinarily, air is discharged from the bleed port (PE). The consumption of air through this discharge is normal, owing to the construction of the precision pressure regulator.

Regulator for Signals (Air operated type only)

Applicable model

- Regulator Series IR2000
- Series VEX1_B³33 In the case of multiple pressure control, consider using series ITV or the E-P HYREG® series VY, which can simplify your system.

Zero Adjustment Screw

 The zero adjustment screw has been adjusted at the time of shipment to set the signal pressure and the output pressure as close to 1:1 as possible. Thus, it is not necessary to adjust it for operational purposes.

Vibration

A Caution

- Vibration is likely to occur under the following conditions.
- Supply pressure is relatively high (approx. 0.5 MPa or higher), set pressure is low (approx. 0.1 MPa or lower) and the outlet side is open to the atmosphere.
- Capacity of the precision regulator outlet side is extremely small.
- The following measures can be taken.
- a. Set the supply pressure extremely low (+0.1 MPa or more of the set pressure).
- b. Make the capacity of the precision regulator outlet side larger.
- c.Install an exhaust throttle valve with a silencer (ASN2-M6) on the bleed port (PE). Vibration can be avoided by adjusting the exhaust throttle. However, if the bleed is throttled too much, sensitivity may be reduced, resulting in poor performance. Be sure not to apply excessive throttle.

Related Products:

Silencer (Series AN)

- Noise reduction capability of over 30 dB.
- Provides a sufficient effective area.

For details, refer to Best Pneumatics No. 6.

Exhaust cleaner (Series AMC)

- Provides noise reduction and oil mist recovery functions.
- Can also be used in an intensive piping system.
- Oil mist removal of 99.9%
- Noise reduction of over 35 dB.

For details, refer to Best Pneumatics No. 6.