
Nylon Tubing Series T/TIA

For general pneumatic tubing, Nylon tubing

Max. Operating Pressure

How to measure the minimum bending radius.

At a temperature of 20°C, bend the tubing into a U shape. Fix one end and gradually move the other end closer. Measure 2R at the point where the outside diameter's rate of change is 10%

∕ Precautions

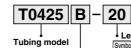
Be sure to read before handling. Refer to front matter 56 for Safety I I Instructions and pages 13 to 16 for I Fittings and Tubing Precautions.

⚠Caution

- 1. Applicable for general industrial water. Please consult with SMC if using other kinds of fluid. Surge pressure must be under the max. operating pressure. If the surge pressure exceeds the maximum operating pressure, it will result in damage to fittings and tubes
- 2. Please exercise caution when using this item in a clean room. There is a possibility of plasticizer and other materials precipitating on the tube surface and detracting from the cleanliness level of the room.

Model

● — 20 m roll □ — 100 m roll (T1613 is reel.)


						Tu	bing s	ize					
			Metr	ic size	(Seri	es T)			In	nch siz	e (Sei	ries TI	A)
Model	T0425	T0403	T0604	T0645	T0806	T1075	T1209	T1613	TIA01	TIA05	TIA07	TIA11	TIA13
Tubing O.D. (mm)	4	4	6	6	8	10	12	16	3.18	4.76	6.35	9.53	12.7
Tubing I.D. (mm)	2.5	3	4	4.5	6	7.5	9	13	2.18	3.48	4.57	6.99	9.56
Black (B)	-	•	-		-	•	<u></u>		<u></u>	+	•	•	+
White (W)	•	•	<u></u>	+	<u></u>	<u></u>	<u></u>	<u></u>	•	•	•	•	•
Red (R)	•		- ∳-	+	•	- ∳-	+			+	+		+
Blue (BU)	•		+		•	•	+			+	+	_	+
Yellow (Y)	•		•		•	•	•				+	-	_
Green (G)	•		+	+	+	-	+			+	+		+
]								Nomin	al size	e (inch)
	5/32"				5/16"				1/8"	3/16"	1/4 "	3/8"	1/2 "
Specifications									Nominal size (mm) 3.2				

Specific	alions	•								$\overline{}$	'			
Fluid							Α	ir/Wat	er					
	20°C or less	3.3	2.0	3.0	2.0	2.0	2.0	2.0	1.6	2.3	2.3	2.3	2.3	2.3
	40°C	2.3	1.4	2.1	1.4	1.4	1.4	1.4	1.1	1.6	1.6	1.6	1.6	1.6
	60°C	1.65	1.0	1.5	1.0	1.0	1.0	1.0	0.8	1.15	1.15	1.15	1.15	1.15
(MPa)	80°C	1.35	0.8	1.25	8.0	0.8	0.8	0.8	0.65	0.95	0.95	0.95	0.95	0.95
	100°C	1.2	0.75	1.1	0.75	0.75	0.75	0.75	0.6	0.85	0.85	0.85	0.85	0.85
Applicable fittin		One-touch fittings, Insert fittings, Self-align fittings, Miniature fittings												
Min. bending radius	Min. bending radius	13	20	24	30	40	50	60	100	15	25	30	50	65
(mm) Note 3)	Bending value (Reference)	10	15	18	23	30	40	45	75	12	20	23	40	48
Operating temp	erature Note 1)			-4	0 to +	100°C	, Wate	r: 0 to	+70°	C (No	freezi	ng)		
Material	Nylon 12													
												-		

- Note 1) Be sure to operate under the maximum operating pressure conditions using the lower maximum operating specification of either the tubing or fittings.
- Note 2) Mount an inner sleeve when using metal One-touch fittings in high-temperature environments of 60°C or more. Use self-align littings at a temperature of 60°C or loss. Note 3) The minimum bending radius is the representative value measured as shown in the left figure.
- - Use a tube above the recommended minimum bending radius.
 The tubing may be bent if used under the recommended minimum bending radius.

 - Therefore, refer to the refraction value and make sure that the tubing is not bent or flattened.
 - Please note that the refraction value is not warranted because of the value when 2R is measured by the method in the left figure if the tubing is bent or flattened, etc.

How to Order

Color

Symbol	Color
В	Black (Translucent)
W	White (Material color)
R	Red (Translucent)
BU	Blue (Translucent)
Υ	Yellow (Translucent)
G	Green (Translucent)

· FEI	igili per roll
Symbol	Length
20	20 m roll
100	100 m roll (Black and white only)

Nylon Tubing Series T/TIA

Made to Order

(Please contact SMC for specifications in detail, dimensions, delivery and specifications other than those mentioned above.)

100 m reel	Metric size and Inch size except ø16: Suffix "-X3" to the end of part number. Ex.) T0425R-100-X3
Longer length reel	Metric size: Suffix "-X3" to the end of part number. Ex.) T0425G-500-X3
20 m roll	Inch size: Suffix "-X4" to the end of part number. Ex.) TIA01BU-20-X4
Reinforced corrugated cardboard specification	ø6, Black and White only: Suffix "-X64" to the end of part number. Ex.) T0604B-500-X64

Made to Order Availability

Part no.	Length Model	T0425*	T0604*	T0806*	T1075*	T1209*	TIA01 *	TIA05 *	TIA07*	TIA11*	TIA13*	Color
	100 m reel	0	0	0	0	0	0	0	0	0	0	Black, White,
хз	150 m reel				0							Red, Blue,
^3	200 m reel			0								Yellow, Green
	500 m reel	0	0									reliow, Green
X4	20 m roll						0	0	0	0	0	Red, Blue, Yellow, Green
VOA	250 m reel		0									Black, White
X64	500 m reel		0									Diack, Wille

KQ2

KQB2

KS KX

KM

M

H/DL L/LL

KC

KK

KK130

KDM

KB

KR

KA

KQG2 KG

KFG2

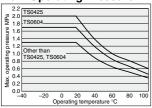
MS

KKA

KP LQ

MQR

Т



Soft Nylon Tubing Series TS/TISA

For general pneumatic tubing Pliable soft nylon tubing

Max. Operating Pressure

Precautions

Be sure to read before handling. Refer I to front matter 56 for Safety Instructions and pages 13 to 16 for Fittings and Tubing Precautions.

∧ Caution

- 1. Compatible with water due to a change in materials. Compatible fluid types are printed on the tube body for differentiation, so please be sure to check this. Note) If using the previous TS/TISA series with "water", the tube may shrink and cause air leakage or the tube may fall out.
- 2. The products which changed the material are applicable for general industrial water. Please contact SMC if using other kinds of fluid. Surge pressure must be under the max. operating pressure. If the surge pressure exceeds the maximum operating pressure, it will result in damage to fittings and tubes.
- 3. Please exercise caution when using this item in a clean room. There is a possibility of plasticizer and other materials precipitating on the tube surface and detracting from the cleanliness level of the room.

How to measure the minimum bending radius

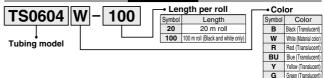
At a temperature of 20°C, bend the tubing into a U shape. Fix one end and gradually move the other end closer Measure 2R at the point where the outside diameter's rate of change is 10%.

Model

— 20 m roll □ — 100 m roll (TS1612 is reel.)

			l ubing size											
					(Series				Inch siz					
N.	Model	TS0425	TS0604	TS0806	TS1075	TS1209	TS1612	TISA01	TISA05	TISA07	TISA11	TISA13		
Tubing	g O.D. (mm)	4	6	8	10	12	16	3.18	4.76	6.35	9.53	12.7		
Tubin	ig I.D. (mm)	2.5	4	6	7.5	9	12	2.18	3.48	4.57	6.99	9.56		
Bla	ack (B)	┝┢⊢	<u> </u>	_•	_•	<u> </u>	_•	•	•	•	•	•		
Wh	nite (W)		_•	_•	_•	_•	$-\bullet$	•	•	•	•	•		
Re	d (R)	├ •	- ∳-	-+-	-+-	•								
Blu	ue (BU)	├ •				-∳-	_	_	_	_	_			
Yel	llow (Y)	⊢+-				-	_		_	_		_		
Gre	een (G)	┝┿┈				-∳-								
			1		1				Nomin	al size (inch)			
		5/32 "		5/16"				1/8 "	3/16"	1/4 "	3/8 "	1/2 "		
								Nominal						
Specifications Specifications 3.2														
Fluid	1					Air/Wa	ater Note	1)						
Max.	20°C or less	2.0	1.7	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3		

Fluid						Air/Wa	ater Note	1)				
Max.	20°C or less	2.0	1.7	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
operating	40°C	1.4	1.2	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
pressure		1.0	0.85	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	80°C	0.8	0.65	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Note 2)	100°C	0.6	0.45	0.35	0.35	0.35	0.4	0.35	0.35	0.35	0.35	0.35
Applicabl	e fittings Note 2) 3)	0	ne-touc	h fittings	s, Insert	fittings,	Self-ali	gn fitting	gs, Minia	ature fitt	ings	
	Min. bending radius	15	23	45	55	65	90	18	27	30	55	65
radus mm ^{1ce 4}	Bending value (Reference)	12	17	34	42	50	70	12	15	23	42	50
Operating	temperature Note 2)			-40 to	+100°C	, Water:	0 to +5	0°C (No	freezin	g)		
Motor	iel					NIV	on 12	_				


| Note 1] Refer to the "Printing/Fluid".
Note 1) Befer to the "Printing/Fluid".
Note 2) Be sure to operate under the maximum operating pressure and operating temperature conditions using the lower specifications of elither the tubing or fittings.
Note 3) Mount an inner sleeve when using metal One-touch fittings in high-temperature environments of 60°C or more. Use self-align fittings at a temperature of 60°C or less.
Note 4) The minimum bending radius is the representative value measured as shown in the left figure.

- Use a tube above the minimum bending radius.
- Use a tube above the minimum bending radius.
- Use a tube above the minimum bending radius.
- Use a tube above the pending radius is not warranted because of the representative value when 2R is measured by the method in the left figure if the tubing is bent or flattened, etc.

Printing/Fluid

	Print code	Fluid
Previous	SMC TS 0604 SOFTNYLON 6 x 4	Air
NEW	● SMC TS 0604 SOFTNYLON 6 x 4	Air/Water
	•	

How to Order

Made to Order

(Please contact SMC for specifications in detail, dimensions, delivery and specifications other than those mentioned above.)

100 m reel	Metric size and Inch size except ø16: Suffix "-X3" to the end of part number. Ex.) TS0425R-100-X3
Longer length reel	Metric size: Suffix "-X3" to the end of part number. Ex.) TS0425G-500-X3
20 m roll	Inch size: Suffix "-X4" to the end of part number. Ex.) TISA01BU-20-X4

Made to Order Availability

Part no.	Length Model	TS0425*	TS0604*	TS0806*	TS1075*	TS1209*	TISA01 *	TISA05*	TISA07*	TISA11*	TISA13*	Color
	100 m reel	0	0	0	0	0	0	0	0	0	0	Black, White.
хз	150 m reel				0							Red. Blue.
_ ^3	200 m reel			0								
	500 m reel	0	0									Yellow, Green
X4	20 m roll						0	0	0	0	0	Red, Blue, Yellow, Green

KQ2 KQB2

KM KF

H/DL L/LL

KC KK

KK130

DM KDM

KB

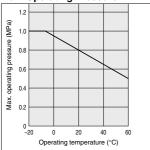
KR KA

KQG2

KG

KFG2 MS

KKA


KP

L₀ MQR

Polyurethane Tubing Series TU/TIUB

For general pneumatic tubing Flexible Polyurethane tubing Additional 21 new colors.

Max. Operating Pressure

Be sure to read before handling. Refer to front matter 56 for Safety Instructions and pages 13 to 16 for Fittings and Tubing Precautions.

⚠Caution

- 1. Applicable for general industrial water. Please consult with SMC if using for the other kind of fluid. Also, the surge voltage pressure must be under the maximum operating pressure. If the surge pressure exceeds the maximum operating pressure, it will result in damage to fittings and tubes.
- The value of the max. operating pressure is at a temperature of 20°C. Refer to the burst pressure characteristics curve for other temperatures. Furthermore, abnormal temperature rises caused by adiabatic compression may result in the burst of the tube
- 3. The value of the minimum bending radius is measured at the temperature of 20°C as shown in the figure below.

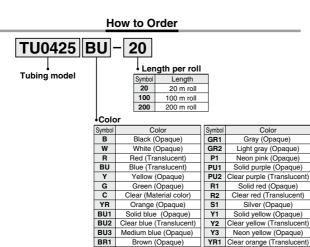
Bend the tube into U-form at a temperature of 20°C. Fix one end and close loop gradually. Measure 2R when the tube breaks or is crushed

Model/Specifications

	•		Tubing size											
			N	/letric s	ize (Se	ries Tl		5	Ir	nch size	e (Serie	es TIUE	3)	
Model		TU0212					TU1208	TU1610			TIUB07			
Tubing O.D.	(mm)	2	4	6	8	10	12	16	3.18	4.76	6.35	9.53	12.7	
Tubing I.D.	(mm)	1.2	2.5	4	5	6.5	8	10	2	3.18	4.23	6.35	8.46	
Black (E	3)	├	- ♦	- ♦>-	-6-		- • -		-6-	-	-		•	
White (V	V)	├	⊸`\$	⊸`\$	<u> </u>	- Ū-	- ●			<u>-</u> -	<u>-</u>	<u>-</u> -	<u> </u>	
Red (R))	├	⊸`\$	⊸`\$	<u> </u>	- Ū-	- ●	-		<u>-</u> -	<u>-</u>	<u>-</u>	<u> </u>	
Blue (Bl	J)	├	⊸`\$	⊸`\$	<u> </u>	- Ū-	- ●			- ∳-	<u></u>	- ∳-	•	
Yellow (Y)	├	⊸`\$	⊸∳-	<u> </u>	- •	- ●	-		<u>-</u> -	<u>-</u>	<u>-</u>	<u> </u>	
Green (C	3)	├	⊸`\$	⊸∳-	<u> </u>	- •	- ●	-		<u>-</u> -	<u>-</u>	<u>-</u> -	<u> </u>	
Clear (C	c)	├	⊸`\$	⊸∳-	<u> </u>	- €	- - ----			<u>-</u> -	<u>-</u>	<u>-</u>	<u> </u>	
Orange (YR)	┝╪╌	⊸`\$	⊸∳-	<u> </u>	- •	- ●	-	- ●-	<u>-</u> -	<u>-</u>	<u>-</u> -	<u> </u>	
Solid blue (BU1)	┝╪╌	−Ď −	− Ď-	<u> </u>	- •	- ●	-	- ●-	-	+	-	•	
Clear blue (BU2)	├	- Ū-		<u> </u>	- Ū-		-		-	+	+	-	
Medium blue	(BU3)	┝╪╌	- ●	-	<u> </u>	- •	- ●	-	-● -	-	+	-	•	
Brown (B	R1)	┝╪╌	- ●	-	<u> </u>	- •	- - -- -	-	-● -	-	+	-	•	
Solid green	(G1)	┝╪╌	- ●	-	<u> </u>	- •	- - -- -	-	-● -	-	+	-	•	
Clear green	(G2)	├		- ●-	<u> </u>	- [•]-	-			-		-		
Neon green	(G3)	-		<u> </u>	<u> </u>	- (•)-	- [•]-	-	<u> </u>	-	+	-	-	
Dark green	(G4)	┝•		- ●-			-			-		-		
Gray (GF	11)	┝•		- ●-			-			-		-		
Light gray (GR2)	├		- ●-			- [•]-			-		-		
Neon pink	(P1)	-		- ●-			-			-				
Solid purple	(PU1)	├	- [●]-		- (•)-			-		+	+	-	-	
Clear purple	(PU2)	├	- [●]-		- (•)-			-		+	+	+	-	
Solid red (R1)	├	- [●]-		- (•)-			-		+	+	+	-	
Clear red	(R2)	├	- [●]-		- (•)-			-		+	+	+	-	
Silver (S	1)	├	- [●]-		- (•)-	- (•)-		-		-	+	+	٠	
Solid yellov	v (Y1)	├	- [●]-		- (•)-	- (•)-		-		-	+	+	٠	
Clear yellov	v (Y2)	├	- [●]-		- (•)-	- (•)-		-		-	+	+	٠	
Neon yellow	/ (Y3)	├	- [●]-		- (•)-	- (•)-		-		-	+	+	٠	
Clear orange	(YR1)	├	-[•]-		- (•)-	- (•)-		-		-	+	+	٠	
Neon orange	(YR2)	 +	- [●]-		- (•)-	- (•)-		-		-	+	+	٠	
Nominal size											(inch)			
			5/32"	1	5/16"	1			1/8"	3/16"	1/4 "	3/8 "	1/2 "	
									Nominal	1				
									size (mm)					
									3.2]				
Fluid							Air/V	Vater						
Max. operating	20°C						0	.8						

0.65

0.5


40°C

60°C

(MPa)

Material

Polyurethane Tubing Series TU/TIUB

Solid green (Opaque)

Neon green (Opaque)

Dark green (Opaque)

G2 Clear green (Translucent)

G1

G3

Made to Order

(Please contact SMC for specifications in detail, dimensions, delivery and specifications other than those mentioned above.)

YR2 Neon orange (Opaque)

100 m reel	Metric size and Inch size: Suffix "-X3" to the end of part number. Ex.) TU0425R-100-X3
Longer length reel	Metric size: Suffix "-X3" to the end of part number. Ex.) TU0425G-500-X3
20 m roll	Inch size: Suffix "-X4" to the end of part number. Ex.) TIUB07W-20-X4
Compatible with the Food Sanitation Law	Metric size: Suffix "-X217" to the end of part number. Ex.) TU0425BU-20-X217

Made to Order Availability

Part no.	Length Model	TU0425*	TU0604*	TU0805*	TU1065*	TU1208*	TIUB01*	TIUB05*	TIUB07*	TIUB11*	TIUB13*	Color
	100 m reel	0	0	0	0	0	0	0	0	0	0	Black, White, Red,
хз	200 m reel			0								Blue, Yellow, Green,
Λ3	400 m reel		0									Clear, Orange
	500 m reel	0										Clear, Crange
X4	20 m roll							0	0	0	0	Red, White, Yellow, Green, Clear, Orange
X217*	20 m roll	0	0	0	0	0						Black, White, Blue, Clear

^{*} Note that the model number is not printed on the tube body.

Multi-core, Multi-color	Refer to page 4
Specification Flat Tubing	neiei io page 4

Refer to page 413-1 for details.

KQ2

KQB2

VM

KF M

H/DL L/LL KC

KK

KK130

DM

KDM KB

KR

KA

KQG2

KG KFG2

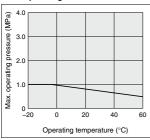
MS KKA

KP

LQ MQR

....

Polyurethane Flat Tubing Multi-core, Multi-color Specification


Series **TU**

RoHS

Compact piping possible 8 color variations

Max. Operating Pressure

⚠ Precautions

Be sure to read this before handling.
For Safety Instructions and Fittings & Tubing Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smcworld.com

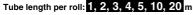
∧ Caution

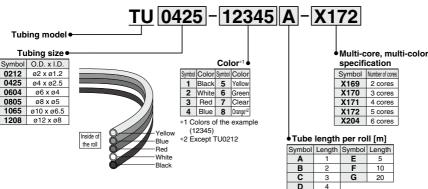
- Please consult with SMC if using for any fluids other than air.
- Abnormal temperature rise caused by adiabatic compression may result in the tube bursting.
- The value of the minimum bending radius is measured at the temperature of 20°C as shown in the figure below.
- As a result of product design characteristics, there are cases of very slight leakage.

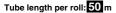
How to measure the minimum bending radius

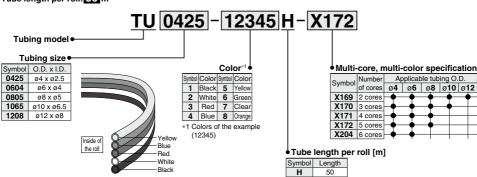
Bend the tube into a U shape at a temperature of 20°C. Fix one end and bend the loop gradually. Measure 2R when the tube breaks or is crushed.

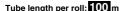
Specifications

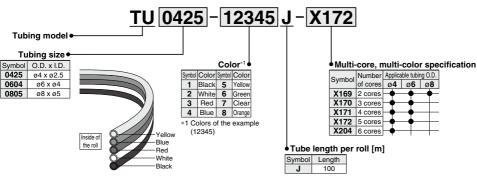

		-										
Mode	ı	TU0212	TU0425	TU0604	TU0805	TU1065	TU1208					
Tubing O.D). (mm)	2	4	6	8	10	12					
Tubing I.D	. (mm)	1.2	2.5	4	5	6.5	8					
Black (B	3)	\vdash	-	-	_	-	-					
White (V	•	—		-	-lack							
Red (R)	•	—	-	-								
Blue (Bl	J)	-			-ullet		—					
Yellow (Y)	-	-lack		-lack		—					
Green (0	3)	—										
Clear (C)	-	-ullet		—	—	—					
Orange	(YR)				-							
	2 cores	X169 (Roll)/X200 (Reel)										
	3 cores		X170 (Roll)/X201 (Reel)									
Number of	4 cores		X171 (Roll)/X201 (Reel)									
cores Note)	5 cores		X171 (10II)/X202 (16el) X172 (Roll)/X203 (Reel)									
	6 cores		X204 (Roll)/X207 (Reel)									
Fluid		Air										
Max. operating	20°C		0.8									
Max. operating 20		0.65										
		0.5										
			One-touch	n fitting, Inser	t fitting, Minia	ture fitting						
		4	10	15	20	27	35					
Operating tem	perature	−20 to +60°C										
Material		Doluurothono										


Note) Refer to "How to Order" for the combination of tubing size and the number of cores.






Please contact SMC for delivery.



ØSMC

KF M

> H/DL L/LL

KQ2

KQB2

KS KX

KM

KC

KK KK130

MATOU

DM KDM

KB

KR

KA

KQG2 KG

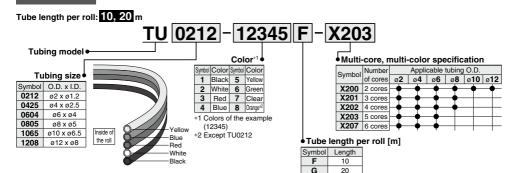
KFG2

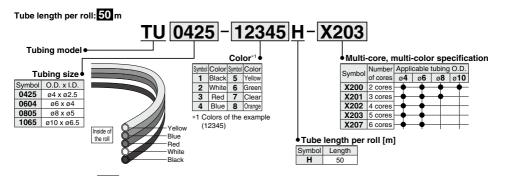
MS

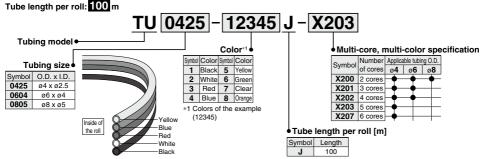
KKA

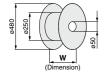
KP LO

MOR


MUN


L


How to Order


Please contact SMC for delivery.

Tube reel dimensions

	W (mm)	Tube length per roll (m)			W (mm)	Tube length per roll (m)					
Model		10	20	50	100	Model		10	20	50	100
	TU0212	51	51	_	_		TU0212	51	51	_	_
	TU0425	51	51	51	51	X202	TU0425	51	51	81	81
X200	TU0604	51	51	81	156	(4 cores)	TU0604	81	81	156	205
(2 cores)	TU0805	81	81	156	156		TU0805	156	156	_	_
	TU1065	156	156	156	_	X203	TU0212	51	51	_	_
	TU1208	156	156	_	_	(5 cores)	TU0425	51	51	81	156
	TU0212	51	51	_	_	(5 cores)	TU0604	156	156	156	_
X201	TU0425	51	51	51	51	V207	TU0212	51	51	_	_

81

156

81

156

(3 cores) TU0604

TU0805

	Model		10	20	50	100	
		TU0212	51	51	_	_	
	X202	TU0425	51	51	81	81	
	(4 cores)	TU0604	81	81	156	205	
1		TU0805	156	156	_	_	
	X203	TU0212	51	51	_	_	
	(5 cores)	TU0425	51	51	81	156	
1	(5 cores)	TU0604	156	156	156	_	
	X207	TU0212	51	51	_	_	
	(6 cores)	TU0425	51	51	81	156	
	(o cores)	TU0604	156	156	156	_	

156

Soft Polyurethane Tubing

Series TUS

KQ2

KQB2

KM

KF

M

H/DL

L/LL

KC

KK

KK130 DM KDM

KB KR

KA

KOG2

KG

KFG2

MS

KKA

ΚP

L₀

MOR

Suitable for piping in confined spaces **Extremely flexible** Soft polyurethane tubing

TUS related accessories Inner sleeve Series TJ

Reinforces soft polyuretharane tubing. Insert an inner sleeve into soft polyurethane tubing when used with a One-touch fitting.

Model

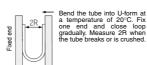
Model	Applicable tubing model	Length
TJ-0425	TUS0425	18
TJ-0604	TUS0604	19
TJ-0805	TUS0805	20.5
TJ-1065	TUS1065	23
TJ-1208	TUS1208	24

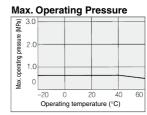
Specifications

ſ	Material	C2700T (Electroless nickel plated)
	Wall thickness	0.2 mm

Be sure to read before handling. Refer to front matter 56 for Safety Instructions and pages 13 to 16 for Fittings and Tubing Precautions.

. Caution


- 1. Use a nylon or polyurethane tubing for general industrial water, otherwise the tube may result in being fallen out or bursted when the max. operating pressure is lower and the surge pressure is occurred.
- 2. Abnormal temperature rises caused by adiabatic compression may result in the burst of the tube.
- 3. The value of the minimum bending radius is measured at the temperature of 20°C as shown in the figure on the right.
- Use inner sleeve, taking the removing force into consideration when used with One-touch fittings.


RoHS

Fluid			Air								
Max. operating	20°C		0.6								
pressure	40°C		0.6								
MPa	60°C		0.4								
Applicable fitting	gs	One-touch fitting, Insert tube fitting, Miniature fitting (Hose nipple type) (3)									
Min. bending rac	lius (mm) (2)	8	3	1	5	1	5	2	2	2	9
Operating temper	erature	-20 to +60°C (No freezing)									
Material						Polyur	ethane				
Tube drawing	Without inner sleeve	15	5	6	i0	6	0	8	5	11	10
strength (N) (Using One-touch fitting)	With inner sleeve	80	0	23	30	25	50	30	00	48	30
Note 1) Not clear b	ut translucent	due to	materi	al							

Note 2) Min, bending radius is measured as shown in the figure below.

Note 3) Always use inner sleeve (Series TJ) in safety circuit or critical area.

How to Order

Made to Order

Multi-core, Multi-color Specification Flat Tubing

Refer to page 414-1 for details.

BU Blue (Opaque) YB Yellow brown (Opaque)

Soft Polyurethane Flat Tubing Multi-core, Multi-color Specification

Series TUS



RoHS

Compact piping possible 8 color variations

TUS related accessories Inner sleeve Series TJ

	Model	Applicable tubing model	Length
	TJ-0425	TUS0425	18
ı	TJ-0604	TUS0604	19
	TJ-0805	TUS0805	20.5
1	TJ-1065	TUS1065	23
ı	TJ-1208	TUS1208	24

Specifications

Material	C2700T (Electroless nickel plated)
Wall thickness	0.2 mm

Precautions

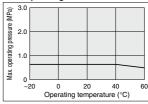
Be sure to read this before handling. I For Safety Instructions and Fittings & I Tubing Precautions, refer to "Handling" Precautions for SMC Products" and the Operation Manual on SMC website, a http://www.smcworld.com

- 1. Abnormal temperature rise caused by adiabatic compression may result in the tube bursting.
- 2. The value of the minimum bending radius is measured at the temperature of 20°C as shown in the figure on the upper right.
- 3. Use inner sleeve, taking the removing force into consideration when used with One-touch fittings.
- 4. As a result of product design characteristics, there are cases of very slight leakage.

Specifications

Model	1	TUS0425	TUS0604	TUS0805	TUS1065	TUS1208			
Tubing O.D.		4	6	8	10	12			
Tubing I.D.		2.5	4	5	6.5	8			
	·····/	i	' i	Ĭ	T	'Ĭ			
Black (B)		T	Ţ	Ţ	T	Ţ			
White (W)		Ţ	T	<u> </u>	_ <u>†</u> _	Ţ			
Red (R)		T		-		-			
Blue (BU)		•	•	•	•	•			
Yellow (Y)		•	-	-	-ullet	•			
Green (G)				-ullet	—•—				
Translucer	nt (N)	— •	-	-		•			
Yellow brow	n (YB)	 • 		-ullet					
	2 cores	X169 (Roll)							
Number of	3 cores	X170 (Roll)							
cores	4 cores	X171 (Roll)							
	5 cores	X172 (Roll)							
Fluid		Air							
Max. operating	20°C			0.6					
pressure	40°C	0.6							
MPa	60°C			0.4					
Applicable fitting	gs	One-touch fitting Note 2), Insert fitting, Miniature fitting (Hose nipple type)							
Min. bending radiu	ıs Note 1) (mm)	8 15 15 22 29							
Operating tempe	rature	−20 to +60°C							
Material				Polyurethane					
Tube drawing	Without	15	60	60	O.F.	110			

strength (N) (Using One-touch fitting) With inner sle Note 1) Min. bending radius is measured as shown in the figure below


How to measure the minimum bending radius

Bend the tube into a U shape at a temperature of 20°C. Fix one end and bend the loop gradually. Measure 2R when the tube breaks or is crushed.

Note 2) Always use inner sleeve (Series TJ) in safety circuit or critical area

Max. Operating Pressure

How to Order

230

Please contact SMC for delivery.

TUS 0425

Tubing • model

Inside of

Tubing size a4 x a2 5 ø6 x ø4 ø8 x ø5 ø10 x ø6.5

Symbol O.D. x I.D 0425 0604 0805 Ø12 x Ø8 1208

> Color* Symbol Color S Color 1 Black 5 Yellow 2 White 6 Red 7 Translucent*2 Blue 8 Yellow brown

*1 Colors of the example (12345) *2 Not clear, but translucent due to material.

Multi-core, multi-color

apcomo	LIOII
Symbol	Number of cores
X169	2 cores
X170	3 cores
X171	4 cores
X172	5 cores

Tube length per roll [m]

Length
1
2
3
4
5
10
20

Blue Red

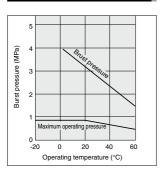
White

Hard Polyurethane Tubing/Standard Type

Series TUH

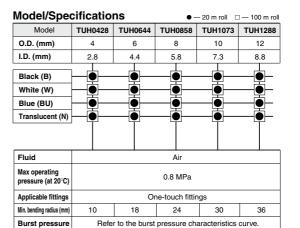
Operating temperature

Material



Bend the tube into U-form at a temperature of 20°C. Fix one end and close loop gradually. Measure 2R when the tube breaks or is crushed.

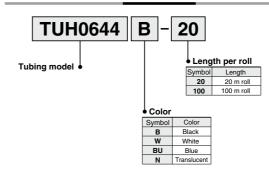
Burst Pressure Characteristics Curve and Operating Pressure



⚠ Precautions

Be sure to read before handling.
Refer to front matter 56 for Safety
Instructions and pages 13 to 16 for
Fittings and Tubing Precautions.

∆ Caution


- Please consult with SMC regarding other fluids. Because ester polyurethane is used, water cannot be used due to the occurrence of hydrolysis.
- 2. The value of the max. operating pressure is at a temperature of 20°C. Refer to the burst pressure characteristics curve for other temperatures. Furthermore, abnormal temperature rises caused by adiabatic compression may result in the burst of the tube.
- The value of the minimum bending radius is measured at the temperature of 20°C as shown in the figure above.

How to Order

-20 to 60°C

Polyurethane

KQ2

KQB2

KM

KF

M H/DL

L/LL KC

KK

KK130

DM KDM

KB

KR

KA

KQG2 KG

KFG2

MS

KKA KP

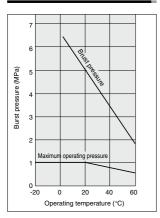
LQ

MQR

SMC

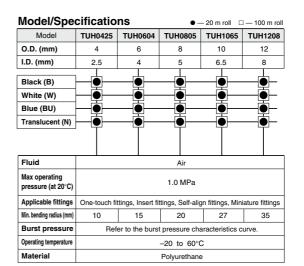
Hard Polyurethane Tubing/High Pressure Type

Series TUH

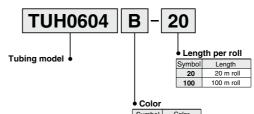


Bend the tube into U-form at a temperature of 20°C. Fix one end and close loop gradually. Measure 2R when the tube breaks or is crushed.

Burst Pressure Characteristics Curve and Operating Pressure



⚠ Precautions


Be sure to read before handling. I Refer to front matter 56 for Safety I Instructions and pages 13 to 16 for Fittings and Tubing Precautions.

⚠Caution

- Please consult with SMC regarding other fluids. Because ester polyurethane is used, water cannot be used due to the occurrence of hydrolysis.
- 2. The value of the max. operating pressure is at a temperature of 20°C. Refer to the burst pressure characteristics curve for other temperatures. Furthermore, abnormal temperature rises caused by adiabatic compression may result in the burst of the tube.
- The value of the minimum bending radius is measured at the temperature of 20°C as shown in the figure above.

How to Order

Symbol Color B Black W White BU Blue N Translucent

Wear Resistant Tubing

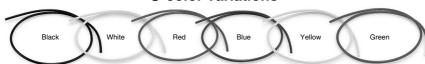
Series TUZ

KQ2 KQB2

KM

KF

M H/DL L/LL KC KK KK130 DM KDM KB KR KA KQG2 KG KFG2 MS KKA KΡ LQ



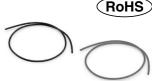
Description	Maximum abrasion (mn
Description	After 10 million cycles
Wear resistant tubing TUZ series	0.16
Polyurethane tubing TU series	0.46

Note) Comparison based on the SMC's specific testing condition

6-color variations

8-size variations

Tubing O.D.: Ø2 Ø3.2 Ø4 ø6


SMC

ø12

MQR

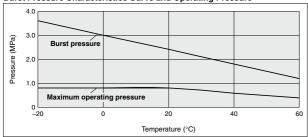
Wear Resistant Tubing

Series TUZ

— 20 m roll □ — 100 m roll

Model

Model	TUZ0212	TUZ3220	TUZ0425	TUZ0604	TUZ0805	TUZ1065	TUZ1208	TUZ1610
Tubing O.D. (mm)	2	3.2	4	6	8	10	12	16
Tubing I.D. (mm)	1.2	2	2.5	4	5	6.5	8	10
	.							
			-	-		-	-	


Tubing I.D. (mm)	1.2	2	2.5	4	5	6.5	8	10
Black (B)		•	<u> </u>	<u> </u>	•	<u> </u>		<u> </u>
White (W)		<u> </u>						
Red (R)					•		<u> </u>	
Blue (BU)		_			•		<u> </u>	
Yellow (Y)					•		<u> </u>	
Green (G)					•		<u> </u>	
Specifications	'							

Specifications 4 1

Fluid			Air/Water						
Applicable fittings			One-touch fittings KQ2 series, Insert fittings KF series, Stainless steel 316 insert fittings KFG2 series, Miniature fittings M/MS series (hose nipple type)						
Max. operating	20°C		0.8 MPa						
pressure	60°C		0.4 MPa						
Burst pressure		Refer to the burst pressure characteristics curve.							
Min. bending radius	(mm)	4	10	10	15	20	27	35	45
Operating temperate	ure	-20 to +60°C (Water: 0 to 40°C) (No freezing)							
Material		Special polyurethane							

- Note 1) The minimum bending radius means the value measured by the method shown in the figure at the right at the temperature of 20°C when the tube is bent. The minimum bending radius assurmes static piping. If the tube is used in a moving part, provide extra length to the tube. Check the bending radius recommended by the flexible protection tube manufacturer for sure if the tube is used in the flexible protection tube.
- Note 2) Applicable for general industrial water. Please consult with SMC if using other kinds of fluid. Surge pressure must be under the max. operating pressure. If the surge pressure exceeds the maximum operating pressure, it will result in damage to fittings and tubes.

Burst Pressure Characteristics Curve and Operating Pressure

How to Calculate Minimum Bending Radius

Bend the tube into U-form at the temperature of 20°C. Fix one end and close loop gradually. Measure 2R when the tube breaks or is crushed.

How to Order

Tubing model

	·
Model	O.D. x I.D. (mm)
TUZ0212	2 x 1.2
TUZ3220	3.2 x 2
TUZ0425	4 x 2.5
TUZ0604	6 x 4
TUZ0805	8 x 5
TUZ1065	10 x 6.5
TUZ1208	12 x 8
TUZ1610	16 x 10

Color

Symbol	Color
В	Black
W	White
R	Red
BU	Blue
Υ	Yellow
G	Green

Length per roll

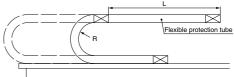
Symbol	Length
20	20 m roll
100	100 m roll

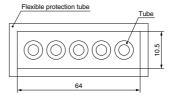
Note) Not clear, but translucent due to material.

Reference Data: Abrasion due to Flexible Protection Tube

Test Conditions

Test tube	TUZ0604, TU0604
Quantity of tube tested	5 pcs. for each
Operating speed	1500 mm/sec
Operating frequency	90 c.p.m
Stroke L	500 mm
Bending radius R	28 mm
Material of flexible protection tube	Special engineering plastic
Tube tie	Not used


Test Results


Model	Maximum abrasion after 10 million cycles (mm)
TUZ0604	0.16
TU0604	0.46

As this test was an acceleration test, the tube bending radius was out of the flexible protection tube manufacturer's allowable range.

When the flexible protection tube is used in the actual application, check the manufacturer's catalog specifications.

The values in the table above are representative values, and not guaranteed

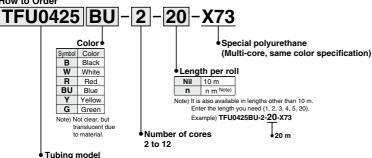
Tube dimensions inside the flexible protection tube

Made to Order

Multi-core, same color specification TFU-X73

Flat type of the TUZ series Number of cores: 2 to 12 cores

Specification: Same color


Multi-core, multi-color specification TUZ-X169 to X172, -X204

Number of cores: 2 to 12 cores Specification: **Multi-color** Refer to page 419-1 for details.

The identification line is not shown.

 $\underline{ \mbox{Please contact SMC for detailed specifications, dimensions, and delivery.} }$

How to Order

 Model
 O.D. x I.D. (mm)

 TFU0425
 4 x 2.5

 TFU0604
 6 x 4

 TFU0805
 8 x 5

 TFU1065
 10 x 6.5

 TFU1208
 12 x 8

KQ2

KS KX

KM

M H/DL

L/LL KC

> KK KK130

> > DM KDM

KB

KR KA

KQG2 KG

KFG2

MS

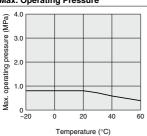
KKA KP

LQ

MQR

Wear Resistant Flat Tubing Multi-core, Multi-color Specification

Series TUZ


Compact piping possible 6 color variations Abrasion: Approx. 1/3

* Compared with SMC polyurethane tubing TU series (Refer to the table below)

Description	Maximum abrasion (mm)
Description	After 10 million cycles
Wear resistant tubing Series TUZ	0.16
Polyurethane tubing	

Note) Comparison based on the SMC's specific testing condition

Max. Operating Pressure

↑ Precautions

Be sure to read this before handling.
For Safety Instructions and Fittings &
Tubing Precautions, refer to "Handling
Precautions for SMC Products" and
the Operation Manual on SMC website,

- Please consult with SMC if using for any fluids other than air.
- Abnormal temperature rise caused by adiabatic compression may result in the tube bursting.
- The value of the minimum bending radius is measured at the temperature of 20°C as shown in the figure below.
- As a result of product design characteristics, there are cases of very slight leakage.

How to measure the minimum bending radius

Bend the tube into a U shape at a temperature of 20°C. Fix one end and bend the loop gradually. Measure 2R when the tube breaks or is crushed.

Specifications

Specific	ation	S				
Mode	ı	TUZ0425	TUZ0604	TUZ0805	TUZ1065	TUZ1208
Tubing O.D). (mm)	4	6	8	10	12
Tubing I.D	. (mm)	2.5	4	5	6.5	8
Black (B)						
White (W)						
Red (R)		+				
Blue (BU)		+				
Yellow (Y))	+				
Green (G)						
	2 cores	'		X169 (Roll)	'	
Number of	3 cores			X170 (Roll)		
	4 cores			X171 (Roll)		
cores	5 cores			X172 (Roll)		
	6 cores			Y204 (Boll)		

Number of	3 cores			X170 (Roll)							
	4 cores		X171 (Roll)								
cores	5 cores		X172 (Roll)								
	6 cores	,	X204 (Roll)								
Fluid			Air								
Max. operating	20°C		0.8								
pressure	40°C			0.6							
MPa	60°C			0.4							
Applicable	fittings	One-touc	ch fitting, Insert	fitting, Miniature	fitting (Hose nip	ple type)					
Min. bending radiu	s ^{Note)} (mm)	10	15	20	27	35					
Operating tem	perature		−20 to +60°C								
Material			Special polyurethane								

Note) The minimum bending radius means the value measured by the method shown in the figure on the left below at the temperature of 20°C when the tube is bent. The minimum bending radius assumes static piping. If the tube is used in a moving part, provide extra length to the tube.

Check the bending radius recommended by the flexible protection tube manufacturer for sure if the tube is used in the flexible protection tube.

In addition, refer to the WEB catalog or the Best Pneumatics No. 6 for abrasion.

- Deed the table into all

Wear Resistant Flat Tubing Multi-core, Multi-color Specification Series TUZ

How to Order

Please contact SMC for delivery.

KQ2

KQB2

KM

KF

M

H/DL

L/LL

KC KK KK130

DM

KDM

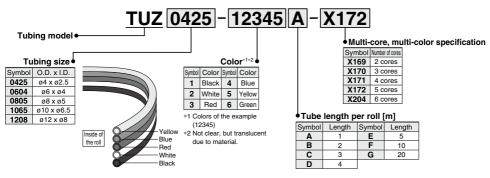
KB

KR

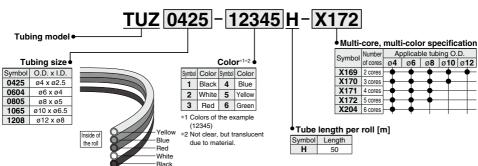
KΑ

KOG2

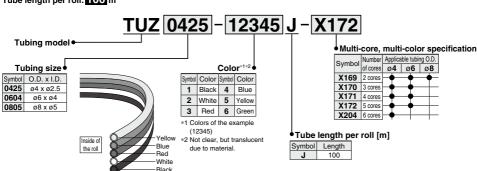
KG


KFG2

MS KKA KP


LO

MQR



Tube length per roll: 50 m

Tube length per roll: 100 m

SMC

Series TUZ Specific Product Precautions

Be sure to read before handling. Refer to front matter 56 for Safety Instructions, pages 13 to 16 for Fittings and Tubing Precautions.

Selection

1. Confirm the specifications.

Products represented in this catalog are designed only for use with compressed air system applications (including vacuum). Do not use at pressure or temperature beyond the range of specifications, as this can cause damage or malfunction. (Refer to the specifications.)

2. In case of using the product for medical care

This product is designed for use with compressed air system applications for medical care purposes. Do not use in transfer applications to a human living body, or in contact with human bodily fluids, body tissues.

↑ Caution

 Do not use in locations where the connecting threads and tube connection will slide or rotate.

The connecting threads and tube connection will come apart under these conditions.

- Use rotary type one-touch fittings (KS, KX series) in cases where sliding or rotation will occur.
- Use the tube at or above the minimum bending radius. Using below the minimum bending radius can cause breakage or flattening of the tube.
- Never use the tube for anything flammable, explosive or toxic such as gas, fuel gas, or cooling mediums, etc.

Because the contents may penetrate outward.

4. Use the suitable fittings for the tube size.

Mounting

⚠ Caution

- Confirm model number, size, etc. before installing.
 Check if there is damage, gouge, crack, etc. on the tube.
- When the tube is connected, consider factors such as changes in the tubing length due to pressure, and allow sufficient leeway.
- Do not apply unnecessary forces such as twisting, pulling, moment loads, etc. on fittings and tube.

This will cause damage to fittings or flattening, bursting or disconnection of tube, etc.

4. Mount so that tube is not damaged due to tangling.

This will cause flattening, bursting or disconnection of tube, etc.

Piping

⚠ Caution

1. Preparation before piping

Before piping is connected, it should be thoroughly blown out with air (flushing) or washed to remove chips, cutting oil and other debris from inside the pipe. Not allowing chips of the piping thread or the seal material to go in.

The minimum bending radius assumes static piping. If the tube is used in a moving part, provide extra length to the tube. Check the bending radius recommended by the flexible protection tube manufacturer for sure if the tube is used in the flexible protection tube.

Air Supply

⚠ Warning

1. Types of fluid

This product is designed for use with compressed air.

2. In case of excessive condensation

Excessive condensation in compressed air may cause malfunction of pneumatic devices. Installation of an air dryer, water separator before filter is recommended.

3. Drain flushing

If condensation in the drain bowl of an air filter is not emptied on a regular basis, the condensation will enter the outlet side, causing malfunction of pneumatic devices.

If the drain flushing is difficult, installation of a filter with an auto drain option is recommended.

For compressed air quality, refer to SMC's "Air Preparation Equipment Model Selection Guide."

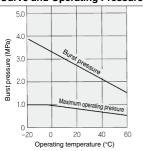
Operating Environment

- Do not use in locations having an explosive atmosphere.
- Do not operate in locations where vibration or impact occurs.
- In locations near heat sources, block off radiated heat.

Maintenance

⚠ Caution

- Perform periodic inspections to check the following problems and replace the tube, if necessary.
 - a) Cracks, gouges, wearing, corrosion
 - b) Air leakage
 - c) Twists or crushing of tube
 - d) Hardening, deterioration, softening of tube
- Do not repair or patch the replaced tube or fittings for reuse.



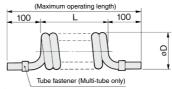
Polyurethane Coil Tubing Series TCU

For flexible tubing Compact piping possible

Burst Pressure Characteristics Curve and Operating Pressure

⚠ Precautions

Be sure to read before handling. I Refer to front matter 56 for Safety Instructions and pages 13 to 16 for Fittings and Tubing Precautions.

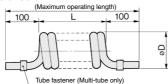

∧ Caution

- Please consult with SMC regarding use with any fluids other than air.
- Refer to the burst pressure characteristics curve for other temperatures. Furthermore, abnormal temperature rises caused by adiabatic compression may result in the burst of the tube.
- Please do not cut the coil and insert it into the fitting. This may cause air leakage, or tubing to come out after installation.

Model/Specifications

Model	TCU 0425B-1	TCU 0425B-2	TCU 0425B-3	TCU 0604B-1	TCU 0604B-2	TCU 0604B-3	TCU 0805B-1
Number of cores	1 core	2 cores	3 cores	1 core	2 cores	3 cores	1 core
Tubing O.D. (mm)		4			6		8
Tubing I.D. (mm)		2.5			4		5
Fluid		Air					
Max. operating pressure (at 20°C)				0.8 MPa			
Applicable fittings	One-to	uch fittings	s, Insert fitti	ngs, Self-a	lign fittings	, Miniature	fittings
Burst pressure		Refer to	the burst p	ressure ch	naracteristi	cs curve.	
Operating temperature	-20 to +60°C						
Material		Polyurethane					
Color				Black			

Dimensions


Specifications	Tubing s	ize (mm)	Coil	(mm)	No. of	No. of coil windings	Max. operating	Standard unit
Model	O.D.	I.D.	L	øD	cores	per tube length	length (m)	of packing
TCU0425B-1			210	18	1	52 ± 2	1.5	
TCU0425B-2	4	2.5	280	28	2	35 ± 1	1.5	
TCU0425B-3			265	26	3	22 ± 1	1	
TCU0604B-1			325	24	1	54 ± 2	2	5 tubes/case
TCU0604B-2	6	4	325	37	2	27 ± 1	1.5	
TCU0604B-3			305	3/	3	17 ± 1	1	
TCU0805B-1	8	5	330	31	1	41 ± 2	2	

^{*} The number of coil windings per tube length and dimensions are changeable due to material.

Made to Order

Change of coil turns, Change of color

(Please contact SMC for specifications in detail, dimensions and delivery.)

Specification	Tubing s	ize (mm)	Coil	(mm)	No. of	No. of coil windings per	Max. operating	Specifications	Tubing s	ize (mm)	Coil ((mm)	No. of	No. of coil windings per	Max. operating
Model	O.D.	I.D.	L	øD	cores	tube length (N)	length (mm)	Model	O.D.	I.D.	L	øD	cores	tube length (N)	length (mm)
TCU0425 □-1-N-X6			N x 4	18	1	3 to 90	L x 5.9 + 200	TCU0805 □-1-N-X6	8	5	N x 8	31	1	3 to 90	L x 5.2 + 200
TCU0425 □-2-N-X6	4	2.5	Nx8	28	2	3 to 90	L x 4.4 + 200	TCU0805 □-2-N-X6	l °	"	N x 16	42	2	3 to 40	L x 3 + 200
TCU0425 □-3-N-X6			N x 12	28	3	3 to 63	L x 2.9 + 200	TCU1065 □-1-N-X6	10	6.5	N x 10	52	1	3 to 45	L x 5 + 200
TCU0604 □-1-N-X6			Nx6	24	1	3 to 90	L x 5.3 + 200	TCU1065 □-2-N-X6] 10	6.5	N x 20	52	2	3 to 35	L x 3 + 200
TCU0604 □-2-N-X6	6	4	N x 12	37	2	3 to 66	L x 3.8 + 200	TCU1208 ☐-1-N-X6	12	8	N x 12	67	1	3 to 35	L x 5 + 200
TCU0604 □-3-N-X6			N x 18	37	3	3 to 44	L x 2.5 + 200	TCU1208 □-2-N-X6] '2	°	N x 24	67	2	3 to 30	L x 3 + 200

^{*} D: B (Black), W (White), R (Red), BU (Blue), Y (Yellow), G (Green), C (Clear), YR (Orange)

SMC

KQ2

KQB2

KM

KF

M H/DL L/LL

KC

KK

KK130

DM

KDM

KB KR

KA

KQG2 KG

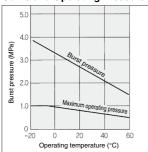
KFG2

MS

KKA

KP LO

MQR

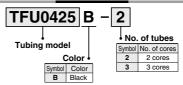

MQI

Polyurethane Flat Tubing Series TFU

Compact piping possible With line markings for piping differentiation Burst Pressure Characteristics Curve and Operating Pressure

⚠ Precautions

Be sure to read before handling. I Refer to front matter 56 for Safety Instructions and pages 13 to 16 for Fittings and Tubing Precautions.


- Please consult with SMC regarding use with any fluids other than air.
- Refer to the burst pressure characteristics curve for other temperatures. Furthermore, abnormal temperature rises caused by adiabatic compression may result in the burst of the tube.
- The value of the minimum bending radius is measured at the temperature of 20°C as shown in the figure on the right.
- As a result of product design characteristics, there are cases of very slight leakage.

1. Change of color (10 m roll)
Suffix "-X4" to the end of part number.
Ex.) TFU0604BU-2-10-X4

Model/Specifications

Model	TFU 0425B-2	TFU 0425B-3	TFU 0604B-2	TFU 0604B-3	TFU 0805B-2	TFU 0805B-3		
No. of cores	2 cores	3 cores	2 cores	3 cores	2 cores	3 cores		
Tubing O.D. (mm)	4	1	(ŝ	8	3		
Tubing I.D. (mm)	2.	5	4	4		5		
Fluid		Air						
Max. operating pressure (at 20°C)			0.8 MPa					
Burst pressure		Refer to the	burst pressu	ure characte	ristics curve			
Applicable fittings	One-touch	n fittings, Ins	ert fittings, \$	Self-align fitt	ings, Miniatu	ure fittings		
Operating temperature		-	20 to +60°C	(No freezing	g)			
Material	Polyurethane							
Color		Black						
Min. bending radius (mm)	10 15 20							
Tube length per roll (m)	10							

How to Order

Bend the tube into U-form at a temperature of 20°C. Fix one end and close loop gradually. Measure 2R when the tube breaks or is crushed.

Made to Order

(Please contact SMC for specifications in detail, dimensions and delivery.)

 \bullet —10 m roll $\,\triangle$ — 50 m reel $\,\Box$ — 100 m reel

Мо	del	TFU0425 □	TFU0604□	TFU0805 □	TFU1065□	TFU1208 □
Tubing C).D. (mm)	4	6	8	10	12
Tubing I	.D. (mm)	2.5	4	5	6.5	8
	2	<u> </u>				
	3			_	-	
No. of	4					
cores	5	+				
	6	—				
	7					
	8	<u> </u>				

W: White, R: Red, BU: Blue, Y: Yellow, G: Green, C: Clear, YR: Orange, (All tubes are the same color regardless of 2 cores or 3 cores.) 2. Reel (50 m, 100 m length, Color changes)

Suffix "-X3" to the end of part number. Ex.) TFU0425B-2-50-X3

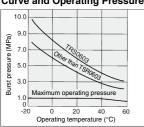
3. No. of cores (10 m roll, each color)

Suffix "-X4" to the end of part number. Ex.) TFU0604B-4-10-X4

Flame Resistant (Equivalent to UL-94 Standard V-0)

FR Soft Nylon Tubing

Series TRS



RoHS

Suitable for air and water piping in environments where sparks from spot welders, etc., may be a problem.

Flame resistant tubing

Burst Pressure Characteristics Curve and Operating Pressure

Model/Specifications

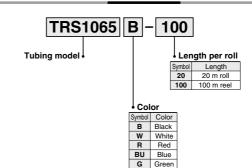
woder/Specification	ıs		 — 20 m roll 	□ — 100 m reel
Model	TRS0603	TRS0805	TRS1065	TRS1208
Tubing O.D. (mm)	6	8	10	12
Tubing I.D. (mm)	3	5	6.5	8
Black (B)	 • •			
White (W)	 	<u> </u>	<u> </u>	<u> </u>
Red (R)	<u> </u>		<u> </u>	
Blue (BU)	<u> </u>	<u> </u>	<u> </u>	
Green (G)	<u> </u>	-	<u> </u>	<u> </u>

Plata			4: 0					
Fluid			Air/V	/ater				
Max. operating pressure (at 20°C)		1.2 MPa						
Burst pressure	Re	Refer to the burst pressure characteristics curve.						
Applicable fittings	FR one-touch fittings: Series KR-W2							
Minimum bending radius (mm)	17	1	9	2	7	32	2	
Operating temperature	-20 to +60°C (Water: 0 to 60°C) (No freezing)							
Material	Flame	Flame resistant nylon (Equivalent to UL-94 standard V-0)						

∧ Precautions

Be sure to read before handling Refer to front matter 56 for Safety Instructions and pages 13 to 16 for Fittings and Tubing Precautions.

∧ Caution


 Applicable for general industrial water. Please consult with SMC if using for the other kind of fluid.

Also, the surge voltage pressure must be under the maximum operating pressure. If the surge pressure exceeds the maximum operating pressure, it will result in damage to fittings and tubes.

The value of the max. operating pressure is at a temperature of 20°C. Refer to the burst pressure characteristics curve for other temperatures.

Furthermore, abnormal temperature rises caused by adiabatic compression may result in the burst of the tube.

How to Order

KQ2

KQB2

KM

KF M

H/DL L/LL

KK KK130

DM

KDM

KB KR

KA

KQG2

KG

KFG2 MS

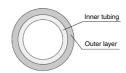
KKA

KP LO

MQR

Flame Resistant (Equivalent to UL-94 Standard V-0) **FR Double Layer Tubing**

Series TRB



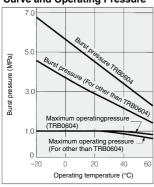
Suitable for air and water piping in environments where sparks from spot welders, etc., may be a problem.

Double layer design using flame resistant resin (equivalent to UL-94 Standard V-0) for outer layer.

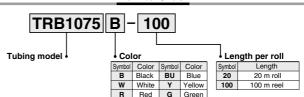
Sectional view of FR double layer tubing

Model

•	_	20	m	roll	П-	— 100	m	ree


	Model	TRB0604	TRB0806	TRB1075	TRB1209
Inner tub	oing O.D. (mm)	6	8	10	12
Inner tub	oing I.D. (mm)	4	6	7.5	9
Outer la	yer thickness (mm)	1	1	1	1
Note)	Black (B)	<u> </u>			
External layer color	White (W)	•	•	<u> </u>	•
yer	Red (R)	•	•		•
퍨	Blue (BU)	•	•	<u> </u>	•
l fer	Yellow (Y)	•	<u> </u>		<u> </u>
ú	Green (G)	<u> </u>	<u> </u>	_	•
Min. b (mm)	pending radius	15	28	35	45

Specifications


Fluid		Air/Water			
Max. operating pressure (at 20°C)		1.0 MPa			
Burst pressure		Refer to the burst pressure characteristics curve.			
Recommend	ded fittings	FR One-touch fittings: Series KR-W2			
Ambient and fluid temperature		−20 to +60°C (Water: 0 to 60°C) (No freezing)			
Material Inner tubing		Nylon 12			
Outer layer		PVC (Equivalent to UL-94 Standard V-0)			

Note) The color of all inner tubing is black.

Burst Pressure Characteristics Curve and Operating Pressure


How to Order

Installation on One-touch Fittings

Length of tubing to be inserted into One-touch fittings is indicated on the outer layer of TRB tubing. Cut the tube according to this indication, (Step 1) and then strip off the outer layer (Step 2) for installing into fittings.

Cut internal and external layers

Strip off external layer only

⚠ Precautions

Be sure to read before handling.

Refer to front matter 56 for Safety Instructions and pages 13 to 16 for Fittings and Tubing Precautions.

⚠ Caution

 Applicable for general industrial water. Please consult with SMC if using for the other kind of fluid. Also, the surge voltage pressure must be under the maximum operating pressure.

If the surge pressure exceeds the maximum operating pressure, it will result in damage to fittings and tubing.

2. The value of the max. operating pressure is at a temperature of 20°C. Refer to the burst pressure characteristics curve for other temperatures. Furthermore, abnormal temperature rises caused by adiabatic compression may result in the burst of the tube.

KQ2

KQB2

KM

KF

M H/DL L/LL

KC

KK

KK130

KDM

KB KR

KA

KQG2

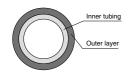
KG KFG2

MS

KKA

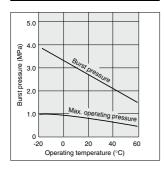
KP LO

MQR


T

Flame Resistant (Equivalent to UL-94 Standard V-0) FR Double Layer Polyurethane Tubing

Series TRBU

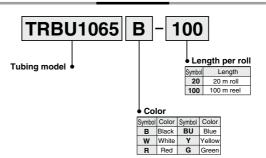


Sectional view of FR double layer tubing

Burst Pressure Characteristics Curve and Operating Pressure

Model

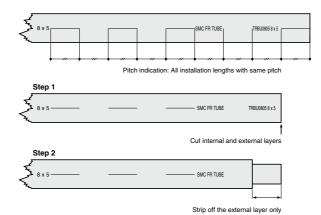
● — 20 m roll □ — 100 m reel


	Model	TRBU0604	TRBU0805	TRBU1065	TRBU1208
Inner	tubing O.D. (mm)	6	8	10	12
Inner	r tubing I.D. (mm)	4	5	6.5	8
Extern	al layer thickness (mm)	1	1	1	1
External layer color	Black (B) White (W) Red (R) Blue (BU) Yellow (Y) Green (G)				
	imum bending us (mm)	15	20	27	35

Specifications

Fluid		Air/Water		
Max. operating pressure (at 20°C)		0.8 MPa		
Burst pressure		Refer to the burst pressure characteristics curve.		
Applicable fittings		FR one-touch fittings: Series KR-W2		
Ambient an fluid tempe	-	-20 to +60°C Water: 0 to 40°C (No freezing)		
Material Internal tubing		Polyurethane		
Material	Outer layer	Polyolefin (Equivalent to UL-94 standard V-0)		

Note) The color of all inner tubing is black.


How to Order

Installation on One-touch Fittings

∕ Caution

Lengths of tubes to be inserted into One-touch fittings are indicated on the outer layer of TRBU tubes. Cut the tube according to this indication, (Step 1) and then strip off the outer layer (Step 2) for installing into fittings.

↑ Precautions

I Be sure to read before handling.

Refer to front matter 56 for Safety Instructions and pages 13 to 16 for Fittings and Tubing Precautions.

⚠ Caution

Applicable for general industrial water. Please consult with SMC if using for the other kind of fluid.
 Also, the surge voltage pressure must be under the maximum operating pressure.

Refer to the burst pressure characteristics curve for other temperatures. Furthermore, abnormal temperature rises caused by adiabatic compression may result in the burst of the tube.

temperature rises caused by adiabatic compression may result in the burst of the tube.

3. The value of the minimum bending radius is measured at the temperature of 20°C as shown in the figure on the right.

Bend the tube into U-form at a temperature of 20°C. Fix one end and close loop gradually. Measure 2R when the tube breaks or is crushed.

KQ2

KQB2

ΚM

KF M

H/DL L/LL

KK

KK130

DM KDM

KB

KR KA

KQG2

KG KFG2

MS

KKA

KP LO

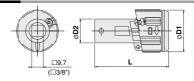
MQR

T

Related Products: Double Layer Tube Stripper Series TKS

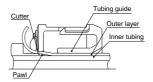
Allows easy stripping of the outer layer from double layer tubes.

Even the double layer polyurethane tubing (Series TRBU), which is highly adhesive to the external layer can be stripped easily.

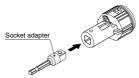


Model

Model Tip		Applicable tubing*	Dime	Weight		
iviouei	color	color Applicable tubing		D2	L	(g)
TKS-06	Orange	TRB0604, TRBU0604		16	58	45
TKS-08	Yellow	TRB0806, TRBU0805	٠.	18	36	45
TKS-10	Blue	TRB1075, TRBU1065	35	20	62	50
TKS-12	Green	TRB1209, TRBU1208	1	22	62	50


* Inner tubing material/TRB: Nylon, TRBU: Polyurethane

Dimensions


Able to strip without damaging the inner tubing

The outer tube can be stripped without damaging the inner tube because a pawl is inserted between the inner and outer tube layers.

Can be attached to tools

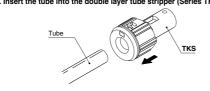
Stripping work can be automated by attaching an air driver, etc. with it.

Adjustment of cutter and stripping length is unnecessary

A constant stripping length is always possible due to the fixed cutter with angle that cuts until the tube reaches the end surface inside the stripper.

Removal of stripped tube is unnecessary.

Since the stripped tube is discharged to the outside, no additional labor is required to remove it.

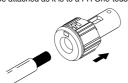

Series TKS **Specific Product Precautions**

Be sure to read before handling. Refer to front matter 56 for Safety Instructions and pages 13 to 16 for Fittings and Tubing Precautions.

Operation

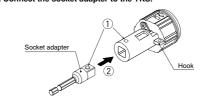
. Caution

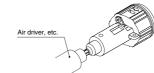
1. Insert the tube into the double layer tube stripper (Series TKS).


- 2. Rotate the TKS in the arrow direction while pushing it.
- 3. Strip the outer layer until the cut end of the tubing strikes the end surface inside the stripper.

The end surface can be confirmed in the window.

Note) Stripping is not possible by rotating in the opposite


4. Pull the TKS off of the tubing to complete stripping. The tube can be attached as it is to a FR One-touch fitting.


Attachment to Tools

⚠ Caution

- 1. Align the socket of the TKS with a commercially available male socket adapter (9.5 mm square).
- 2. Connect the socket adapter to the TKS.

3. Connection with tools such as an air driver is also possible. Note) Ensure the TKS does not shake or vibrate.

Operation

∕ Caution

- 1. When using a tool such as air driver, use a pushstart type which rotates after the tubing is inserted.
- 2.Do not insert the tube when the TKS is rotating, as the pawl may be damaged.

KQ2

KQB2

KM

KF

M H/DL L/LL

KC

KK

KK130 DM

KDM

KB

KR KA

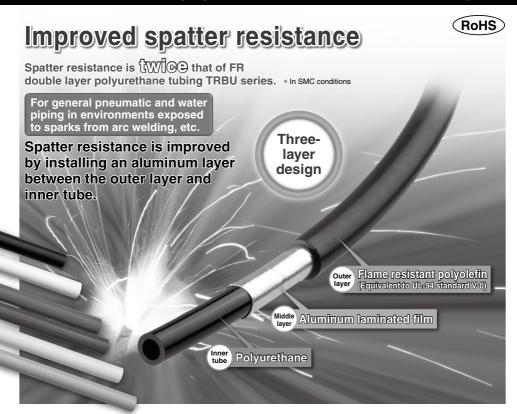
KOG2

KG

KFG2 MS

KKA

ΚP L₀


MOR

FR Three-layer Polyurethane Tubing

Series TRTU

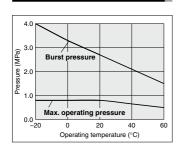
Flame Resistant (Equivalent to UL-94 Standard V-0)

6-color variations

Мо	Model								
	Model	TRTU0604	TRTU0805	TRTU1065	TRTU1208				
Inn	er tube O.D. (mm)	6	8	10	12				
Inn	er tube I.D. (mm)	4	5	6.5	8				
Out	ter layer thickness (mm)	1	1	1	1				
	Black (B)								
흥	White (W)								
layer color	Red (R)								
<u>a</u>	Blue (BU)								
Outer	Yellow (Y)								
	Green (G)								

Flame Resistant (Equivalent to UL-94 Standard V-0) FR Three-layer Polyurethane Tubing

Series TRTU


For general pneumatic and water piping in environments exposed to sparks from arc welding, etc.

How to measure the minimum bending radius

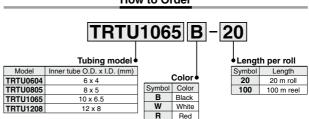
Bend the tube into the U-form at a temperature of 20°C. Fix one end and close loop gradually. Measure 2R when the deformed ratio of the tube diameter at bending reaches 5%.

Burst Pressure Characteristics Curve and Operating Pressure

Model

 — 20 m roll □ — 100 m reel TRTU0604 TRTU0805 TRTU1065 TRTU1208 Model Inner tube O.D. (mm) 6 8 10 12 Inner tube I.D. (mm) 4 5 6.5 8 Outer layer thickness (mm) 1 1 Black (B) White (W) Note 3 Outer Red (R) laver Blue (BU) color • Yellow (Y) Green (G)

Specifications


			l .				ı	
Fluid Note 1)		Air, Water						
Applicable fittin	FR One-touch fittings: Series KR-W2 Metal One-touch fittings: Series KQB2							
At 20°C				0.8 N	ЛРа			
Max. operating pressure	At 40°C 0.				0.65 MPa			
pressure	At 60°C	0.5 MPa						
Burst pressure		Refer to the burst pressure characteristics curve.						
Min. bending rad	lius (mm) Note 2)	50	6	0	7	0	8	0
Ambient and flu	id temperature	-20 to	+60°C,	Water: 0	to 40°C	(No fre	ezing)	
	Inner tube	Polyurethane						
Material	Middle layer		Alun	ninum la	minated	l film		
	Outer layer	Polyolefin (Equivalent to UL-94 standard V-0)						

Note 1) Applicable for general industrial water. Please consult with SMC if using for the other kind of fluid. Also, the surge pressure must be under the maximum operating pressure. If the surge pressure exceeds the maximum operating pressure, it will result in damage to fittings and tubes.

Note 2) The minimum bending radius is the representative value measured as shown in the left figure. Allow extra length when piping since the tube may be bent if used under the minimum bending radius.

Note 3) The color of all inner tubes is black

How to Order

BU

G

Blue

Yellow

Green

KQ2

KQB2

KM

KF

M H/DL L/LL

KC

KK

KK130

DM KDM

KB

KR

KA

KQG2

KG

KFG2

MS

KKA

KP

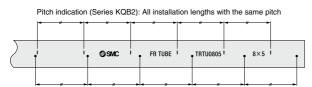
L₀

MQR

Series TRTU

Installation on One-touch Fittings

Pitch length for installation on a One-touch fitting is indicated on the outer layer of the TRTU tubing.

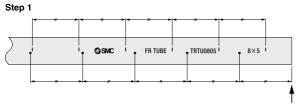

(There are two types of applicable fittings, so two types of pitch length for installation are available.)

Cut the tube according to this indication (Step 1) and strip off the outer layer (Step 2) using a special tool.

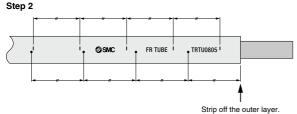
Strip off the aluminum laminated film to prevent the inner tube from being damaged (Step 3) and install it on the One-touch fitting. Refer to the Operation Manual for details of installation on the One-touch fitting.

The Operation Manual can be downloaded from the SMC URL below.

http://www.smcworld.com



Pitch indication (Series KR-W2): All installation lengths with the same pitch


Identification of the pitch length for installation "ı": Series KQB2

" • ": Series KR-W2

Installation on the KR-W2 series

Outer layer, aluminum laminated film and inner tube are cut at the "." mark.

Step 3 FR TUBE TRTU0805

> Strip off the aluminum laminated film to prevent the inner tube from being damaged.

Metal One-touch fittings Series KQB2

Flame resistant (equivalent to UL-94 standard V-0) FR One-touch fittings Series KR-W2

Use a special tool for stripping off the outer layer.

Part no.: YS-100

* Refer to the Operation Manual for details of how to use the special tool.

2-Layer Soft Fluoropolymer Tubing

Series TQ

Carries fluid such as solvent with a soft and abrasion resistant tube.

RoHS

KQ2

KQB2

KM

KF

H/DL L/LL

KC KK

KK130

DM KDM

KB KR

KA

KOG2 KG

KFG2

MS KKA

ΚP

LO

MOR

Flexibility

Improved by up to 55%*1

Minimum bending radius (Tube close bend radius)

TQ: 9 mm TL: 20 mm (Fluoropolymer Tubing, Super PFA)

Reduced to 1/30

*1. Compared with SMC Fluoropolymer Tubing/TL (ø6 x ø4)

(Fluoropolymer Tubing)

tube *2. Based on friction test of tubes

Light weight

Wearing

of outer laver

> Weight reduced by approximately 44%*3

*3. 2-Layer Soft Fluoropolymer Tubing (TQ): 26.5 g/m Fluoropolymer Tubing (TL): 47 g/m (ø8 x ø6)

Applications

Automobile Semiconductor

Food

Medical

TD/Soft fluoropolymer: 32 mm

TQ: 18 mm

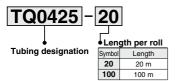
Machine tools

Series Variations

Designation	TQ0425	TQ0604	TQ0806	TQ1008	TQ1209
O.D. (mm)	4	6	8	10	12
I.D. (mm)	2.5	4	6	8	9
20 m roll	•	•	•	•	•
100 m roll	•	•	•	•	•

2-Layer Soft Fluoropolymer Tubing

Series TQ



How to measure the minimum bending radius

Bend the tube into a U shape at a temperature of 20°C. Fix one end and bend the loop gradually at 100 mm/min. Measure 2R when the tube breaks or is crushed.

How to Order

Specifications

Designati	on	TQ0425	TQ0604	TQ0806	TQ1008	TQ1209	
O.D. (mm)		4	6	8	10	12	
I.D. (mm)		2.5	4	6	8	9	
Roll	20 m	•	•	•	•	•	
noii	100 m	•	•	•	•	•	
Color Note 1)			Translu	ucent (Materia	al color)		
Fluid Note 2)			Air, Wa	ter, Inert gas,	Solvent		
Applicable fitti	ngs Note 3)		ture fittings N	gs KF, KFG2, M, MS series fittings LQ1, l	(Hose nipple		
Max. operating Note 4) pressure (MPa)	20°C	2.0	1.9	1.5	1.1	1.2	
Min. bending radius (tube close ber	id radius) Note 51 (mm)	4	9	26	42	37	
Fluid temperature (f	ixed usage)	Air, Inert gas: -20 to 100°C, Water, Solvent: 0 to 70°C (No freezing)					
Material Inner layer: Special fluoropolymer, Outer layer: Special nylon				al nylon resin			

Note 1) There may be plasticizer (white powder) deposits on the external surface of the tube. Please be careful when the tube is used in clean rooms. Otherwise, the clean level may decrease.

Note 2) When solvent is used, make sure to test in the same environment as the actual operating environment, and confirm that no problem will occur in the operating conditions. The standard value of the Applicable Fluid List below is the reference value based on the test result performed under specific conditions.

The product can be physically affected by temperature, pressure, chemical density, etc, causing permeation or swelling, and this may cause some problems.

Note 3) Perform periodic maintenance inspections. If leakage continues to occur after tightening, replace the tube with a new one. (Refer to Maintenance in the Specific Product Precautions on page 435.)

When the tube rotates, perform a test to make sure no problem occur in the actual operating conditions.

When the true rotates, perform a test to make sure no problem occur in the actual operating conditions. When the product is used with motion for a long time, or at a high temperature, the tubes may have leakage due to deterioration of the materials.

Note 4) Observe the lesser value of the maximum operating pressure between the tubing and fitting. The surge pressure must not exceed the maximum operating pressure. If the surge pressure exceeds the maximum operating pressure, it will result in damage to tubes and fittings. Furthermore, abnormal temperature rise caused by a disbatic commession max result in the tube burstings.

caused by adiabatic compression may result in the tube bursting.

Note 5) Minimum bend radius (tube close bend radius) is not guaranteed. The value of 2R in the left figure is measured with a bent or flattened tube.

Note 6) For the installation of fluoropolymer fitting LQ1 and LQ3, please contact SMC.

Applicable Fluid List

Fluid in the list below are chemically inert Note 1), to tubing material. Possible physical effects may occur such as penetration and swelling due to temperature, pressure and chemical density. To use tubing in a solvent environment, tests should be performed with the same environment to ensure no problem occurs with operating environment.

Inner layer Outer layer			Inner layer	Outer layer	
Chemical			Chemical		
22.111001	Special fluoropolymer	Special nylon resin	2	Special fluoropolymer	Special nylon resin
Hydrochloric acid	0	Δ	Citric acid	0	Δ
Sulfuric acid	0	Δ	Stearic acid	0	Δ
Nitric acid	0	×	Formic acid	0	Δ
Caustic soda	0	Δ	Ethyl acetate	0	0
Caustic potash	0	Δ	Butyl acetate	0	Δ
Ammonlum hydroxide	0	0	Methyl alcohol	0	0
Hydrogen peroxide	0	Δ	Ethyl alcohol	0	0
Water	0	0	Butyl alcohol	0	0
Phenol	0	×	Isopropyl alcohol	0	0
Benzene	0	Δ	Cellosolve	Δ	Δ
Toluene	0	Δ	Hexane	0	Δ
Xylene	0	Δ	Cyclohexane	0	Δ
Carbon tetrachloride	0	×	Mineral oil ASTM No.3	0	0
Acetone	0	Δ	Naphtha	0	0
Methyl ethyl ketone	0	^			

Note 1) "Chemically inert" means - not to cause any chemical reaction.

Note 2) Criteria: \bigcirc Applicable, \triangle Not recommended, \times Inapplicable

Note 3) Applicable Fluid List shows the reference value based on test results performed under specific conditions. Application for products is not guaranteed.

Note 4) Applicable Fluid List is for tube materials. For use in environments containing solvents, please contact SMC.

Max. Operating Pressure

Unit: MPa

Temperature (°C)	TQ0425	TQ0604	TQ0806	TQ1008	TQ1209
-20 to 20	2.0	1.9	1.5	1.1	1.2
30	1.7	1.6	1.2	0.9	1.0
40	1.4	1.4	1.0	0.8	0.9
50	1.2	1.1	0.8	0.6	8.0
60	1.1	1.0	0.7	0.5	0.7
70	1.0	0.9	0.6	0.4	0.6
80	0.9	0.8	0.5	0.4	0.5
90	0.8	0.7	0.4	0.3	0.4
100	0.7	0.6	0.4	0.3	0.3

Series TQ **Specific Product Precautions**

Be sure to read before handling. Refer to front matter 56 for Safety Instructions and pages 13 to 16 for Fittings and **Tubing Precautions.**

Selection

∕ Warning

1. Check the specifications.

Give careful consideration to operating conditions such as the application, fluid and environment, and use within the operating ranges specified in this catalog. Tube may burst or lead to operation failure if operating conditions are out of the specification range. The specifications of the catalog are designed assuming the product is used with the fixed conditions.

2. When using the product for medical care

This product is designed for use with compressed fluid system applications for medical care purposes. Do not use in contact with human bodily fluids, body tissues or transfer applications to a human living body.

3. Maintenance

Perform periodic maintenance inspections, securing enough space for maintenance

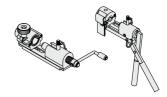
4. Countermeasures for static electricity

Since static electricity may be generated depending on the fluid being used, implement suitable countermeasures.

- 1. When toxic solvent is used, make sure to test in the same environment as the actual operating environment, and confirm that no problem will occur in the operating conditions.
- 2. When the joint of the tube or fitting rotates, make sure to test it in the same environment as the actual operating environment, and confirm that no problems will occur in the operating conditions.
- 3. The surge pressure must not exceed the maximum operating pressure.
- 4. There may be plasticizer (white powder) deposits on the external surface of the tube. Please be careful when the tube is used in clean rooms. Otherwise, the clean level may decrease.
- 5. If fittings of brands other than SMC are used, be sure to confirm that no problem will occur with the operating conditions.
- 6. Trademark, product number, the material of inner/ outer layer, O.D. x I.D. size, production lot number, and country of origin are printed in 500 mm intervals on the outer surface of the tube. Printed letters may be erased depending on fluid.

Mounting

∕ Caution


- 1. Check the model number, size, etc. before installing. Check tubing for damage, gouges, cracks, etc.
- 2. Before piping, perform air blow (flushing) or cleaning to remove any dust, etc. from the piping.
- 3. There may be plasticizer (white powder) deposits on the surface of the tube, but there is no impact on
- 4. Cut the tube perpendicularly using a tube cutter.
 - If the tube is cut incorrectly, fluid can leak or the tube can fall out
- 5. When connecting tubing, allow a sufficient margin considering the change of tube diameter and length due to pressure.
- 6. Do not apply unnecessary forces such as twisting, pulling, moment loads on fittings or tubing. It may cause leakage, the fitting to fracture or the tube to be crushed, burst or fall off.

Mounting

∕.∖ Caution

7. Mount so that tubing is not damaged due to tangling and abrasion. This can cause flattening, bursting or disconnection of tubing, etc. If the LQ1 or LQ3 fitting is used, connect the tube with the specialized tool.

Refer to the pamphlet "High-Purity Fluoropolymer Fittings HY-PER FITTING/Series LQ1, 2 Work Procedure Instructions" (M-E05-1) or "High Purity Fluoropolymer Fittings Hyper Fitting / Flare Type Series LQ3 Fitting Procedure" (M-E06-4) for connecting tubing and special tools. (Downloadable from our web-

Operating Environment

∕ Marning

- 1. Do not use in locations having an explosive atmo-
- 2. When vibration or impact is applied, make sure to test in the same environment as the actual operating environment, and confirm that no problem will occur in the operating conditions.
- 3. In locations near heat sources, block off radiated heat.

Maintenance

∕ Caution

- 1. Check the following after the initial installation and for each periodic inspection. If any problem is confirmed, replace the tube with a new product or reconsider the customer's operating conditions.
 - a) Cracks, gouges, wearing, corrosion
 - b) Leakage, penetration, dissolution c) Twists or crushing of tubing

 - d) Hardening, deterioration, softening of tubing
 - * There may be plasticizer (white powder) deposits on the surface of the tube, but there is no impact on performance.
- 2. The two layers of the tube are completely bonded. If separation is confirmed between them, replace the tube with a new one or reconsider the customer's operating conditions.
- 3. If the tube and the fitting are removed or replaced, eliminate the residual fluid with air or water.
- 4. When using insert, miniature or fluoropolymer fittings over a long period, some leakage may occur due to age deterioration of the materials. If any leakage is detected, correct the problem by additional tightening. If tightening becomes ineffective, replace the fittings with a new product immediately.
- 5. Do not repair or patch the replaced tubing or fittings for reuse.

K02

KQB2

H/DL L/LL

KC KK

KK130

DM **KDM**

KB KR

KA

KQG2 KG

KFG2

MS KKA

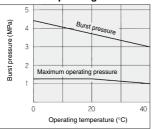
KP L₀

MQR

435

Antistatic Tubing Series TA

Conductive tube prevents troubles caused by static electricity.


Antistatic Soft Nylon Tubing: Series TAS

For pneumatic piping and applications which require the measures against antistatic electricity.

Flame resistant tubing (Equivalent to UL-94 standard V-0)

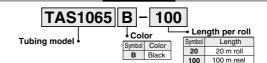
Burst Pressure Characteristics Curve and Operating Pressure

⚠ Precautions

Be sure to read before handling.
Refer to front matter 56 for Safety
Instructions and pages 13 to 16 for
Fittings and Tubing Precautions.

∧ Caution

- The maximum operating pressure is the value at 20°C. Refer to the burst pressure characteristics curve for other temperatures. Avoid abnormal temperature rises caused by adiabatic compression.
- The value at temperature of 20°C and O.D. variable rate 10% max.
- Please exercise caution when using this item in a clean room. There is a possibility of plasticizer and other materials precipitating on the tube surface and detracting from the cleanliness level of the room.


Model/Specifications ● - 20 m roll □ - 100 m re									
Model	TAS3222	TAS0425	TAS0604	TAS0805	TAS1065	TAS1208			
Tubing O.D. (mm)	3.2	4	6	8	10	12			
Tubing I.D. (mm)	2.2	2.5	4	5	6.5	8			
Black (B)			-	-		-			

Fluid	Air					
Max. operating pressure (at 20°C)	1.2 MPa					
Burst pressure	Refer to the burst pressure characteristics curve.					
Recommended fittings	Antistatic one-touch fittings: Series KA Miniature fittings: Series M and MS Note)					
Minimum bending radius (mm)	12	12	15	19	27	32
Operating temperature	0 to 40°C					
Material	Conductive nylon + Flame resistant nylon (Equivalent to UL-94 standard V-0)					
Surface resistance			10⁴ to	$10^7 \Omega$		

Note) Miniature fittings: Only the following types are available for Series M and MS

Series M	Series MS
M-3AU-3, M-3AU-4, M-5AU-3, M-5AU-4	MS-5AU-3, MS-5AU-4, MS-5AU-6
M-5AU-6, M-5H-4, M-5H-6	MS-5H-4, MS-5H-6

How to Order

Made to Order

Coil Tubing

Please contact SMC for details.

KQ2 KQB2

KM

KF

M

H/DL L/LL KC

KK130

DM

KDM ΚB

KR

KA

KOG2

KG

KFG2

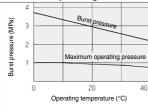
MS

KKA

KΡ

LO

MQR


Antistatic Polyurethane Tubing: Series TAU

For pneumatic piping and applications which require the measures against antistatic electricity.

Flexible tubing

Burst Pressure Characteristics Curve and Operating Pressure

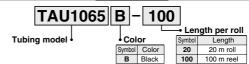
Be sure to read before handling. Refer to front matter 56 for Safety Instructions and pages 13 to 16 for Fittings and Tubing Precautions.

.↑\Caution

- 1. The maximum operating pressure is the value at 20°C. Refer to the burst pressure characteristics curve for other temperatures. Avoid abnormal temperature rises caused by adiabatic compression.
- 2. The value of the minimum bending radius is measured at the temperature of 20°C as shown below

Bend the tube into U-form at a temperature of 20°C. Fix one end and close loop gradually. Measure 2R when the tube breaks or is crushed

3. Because ester polyurethane is adopted, water cannot be used due to the occurrence of hydrolysis.


Model/Specification	ations			•-	20 m roll □ -	— 100 m ree	
Model	TAU3220	TAU0425	TAU0604	TAU0805	TAU1065	TAU1208	
Tubing O.D. (mm)	3.2	4	6	8	10	12	
Tubing I.D. (mm)	2	2.5	4	5	6.5	8	
Black (B)		-	-	•	-	-	

Fluid	Air									
Max. operating pressure at 20°C	0.9 MPa									
Burst pressure	Refer to the burst pressure characteristics curve.									
Recommended fittings	Antistatic one-touch fittings: Series KA Miniature fittings: Series M and MS Note)									
Minimum bending radius (mm)	10	1	0	15	20	0	27	,	3	5
Operating temperature	0 to 40°C									
Material	Conductive polyurethane									
Surface resistance	10 ⁴ to 10 ⁷ Ω									

Note) Miniature fittings: Only the following types are available for Series M and MS

Series M	Series MS				
M-3AU-3, M-3AU-4, M-5AU-3, M-5AU-4 M-5AU-6, M-5H-4, M-5H-6	MS-5AU-3, MS-5AU-4, MS-5AU-6 MS-5H-4, MS-5H-6				

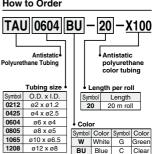
How to Order

Made to Order

Coil Tubing Flat Tubing Please contact SMC for details.

Color Tubing

- 5 colors
- Surface resistance 10⁹ Ω


Considienties

Specifications					
Fluid	Air				
Max. operating pressure at 20°C	0.8 MPa				
Ambient and fluid temperature	0 to 40°C				
Material	Antistatic polyurethane				
Surface resistance	10°Ω				
Recommended fittings	Antistatic One-touch fittings: Series KA Miniature fittings: Series M and MS Note)				
Note) Miniature fittings: Only the following types are					

available for Series M and MS

Series M	Series MS
M-3AU-2, M-3AU-4 M-5AU-2, M-5AU-4 M-5AU-6, M-5H-4 M-5H-6	MS-5AU-4, MS-5AU-6 MS-5H-4, MS-5H-6

How to Order

Black

Fluoropolymer Tubing Variations

Series TL/TIL/TLM/TILM/TH/TIH/TD/TID

KQ2

KQB2

KM KF

H/DL L/LL KC KK KK130

DM

KDM KB

KR KA

High Purity Fluoropolymer Tubing (Material Super PFA Series TL/TIL

It is suitable for applications which require a highly smooth internal surface and small amount of elution of fluorine ions. * It has heat and chemical resistance equivalent to PFA.

Fluoropolymer Tubing (PFA)

Series TLM/TILM

Material PFA

The material consists of a good chemical resistant fluoropolymer. This also has good heat resistance, and it is suitable for a wide range of applications.

FEP Tubing (Fluoropolymer)

Series TH/TIH

This has better resistance in chemical environments.

P.444

LQ1, LQ2, LQ3

Soft Fluoropolymer Tubing

Series TD/TID (Material) Modified PTFE

Flexibility improved by approx. 20%

M, MS (Hose nipple type)

KF, KFG2

LQ1, LQ2, LQ3

(Compared with SMC TL/TIL Series) Suitable for applications which require flexibility.

KOG2

KG KFG2

MS

KKA KΡ

LO

MOR

Seri	es	TL/TIL	TLM/TILM	TH/TIH	TD/TID		
Material		Super PFA	PFA	FEP	Modified PTFE		
Chemical resistance		0	0	0	0		
Heat resistance		260°C	260°C	200°C	260°C		
Flexibility		Δ	Δ	Δ	0		
Ion elution		0	0	0	0		
Internal smooth	ness	0	Δ	0	0		
Fluid		Chemicals, Deionized water	Chemicals, Deionized water	Air, Water, Inert gas			
Table - O.D.	Metric	ø4 to ø19	ø2 to ø25	ø4 to ø12	ø4 to ø12		
Tubing O.D.	Inch	1/8" to 1"	1/8" to 1 1/4"	1/8" to 3/4"	1/8" to 1/2"		
Color		Translucent	Translucent, Red, Blue, Black	Translucent, Red, Blue, Black	Translucent		
_ ω One-tou	ch fittings	_	KQ2 KQG2 KP KP□	KO2 KOG2 KP KP□	_		

Fluoropolymer fittings ○: Very good ○: Good △: Moderate

Miniature fittings

Insert fittings

LQ1, LQ2, LQ3 The comparison table shown above was prepared based on a relative comparison taking the characteristics of each fluoropolymer tubing into consideration.

M, MS (Hose nipple type)

KF, KFG2

M, MS (Hose nipple type)

KF, KFG2

LQ1, LQ2, LQ3

RoHS

High Purity Fluoropolymer Tubing

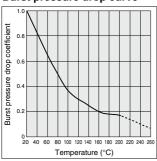
Series TL/TIL

Series and Specifications

Series	es and Specifications														
			Met	ric sizes	(Series	TL)				Inc	h sizes (Series T	L)		
Tubing	model	TL0403	TL0604	TL0806	TL1008	TL1210	TL1916	TIL01	TILB01	TIL05	TIL07	TIL11	TIL13	TIL19	TIL25
Nominal	diameter	_	_	_	_	_	_	1/8"	1/8"	3/16"	1/4"	3/8"	1/2"	3/4"	1"
Tubing	size	ø4 x ø3	ø6 x ø4	ø8 x ø6	ø10 x ø8	ø12 x ø10	ø19 x ø16	1/8" x 0.086"	1/8" x 1/16"	3/16" x 1/8"	1/4" x 5/32"	3/8" x 1/4"	1/2" x 3/8"	3/4" x 5/8"	1" x 7/8"
O.D.	Basic diameter	4	6	8	10	12	19	3.18	3.18 3.18 4.75 6.35 9.53				12.7	19.05	25.4
(mm)	Tolerance		±0).1		+0).2).1			±0.1				+0.2 -0.1	
Thickness	Basic diameter	0.5			1		1.5	0.5	0.8	0.8	1.2		1.	.6	
(mm)	Tolerance	±0.05		±C).1		±0.15	±0.05	±0.08	±0.08	±0.12		±0.).15	
	10 m	_	-	_	•	•	•	-	ı	_	_	•	•	ı	_
	20 m	•	•	•	•	•	•	•	-	•	•	•	•	•	•
Bundle 1	50 m	•	•	•	•	•	•	•	_	•	•	•	•	•	•
	100 m	•	•	•	•	•	•	•		•	•	•	•	•	
	50 Ft (16 m)	_	_	_	_	_	_	•	•	•	•	•	•	•	•
	100 Ft (33 m)	_	_	_	_	_	_	•	•	•	•	•	•	•	•
Straight pipe	2 m	•	•	•	•	•	•	•	ı	•	•	•	•	•	•
Color							Trans	slucent (d	olor of m	aterial)					
Applica	ble fluid					Re	efer to th	e applica	ble fluid	in page 4	148.				
Max. oper pressure	ating Note 1) (at 20°C)		1 MPa		0.9 MPa	0.7 MPa	0.6 MPa			1 N	IPa			0.7 MPa	0.5 MPa
(at 20°C		4.9 MPa	6.9 MPa	4.7 MPa	3.6 MPa	2.9 MPa	2.6 MPa	6.4 MPa	9.9 MPa	6.7 MPa	7.9 MPa	6.7 MPa	4.6 MPa	2.8 MPa	2.0 MPa
Min. ben radius (n	ding Note 2) nm)	2	0	40	65	110	160	12	6	2	20	30	60	160	290
Max. operat								26	o°C						
Material								Sup	er PFA						
														A4 - 4	

Note 1) • The maximum operating pressure is the value at 20°C. For other temperatures, calculate from the burst pressure drop coefficient.

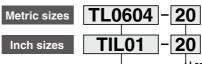
Furthermore, an abnormal temperature increase due to adiabatic compression can cause tubing to bust. To operate at a temperature other than 20°C, the operating pressure must be no more than the value calculated using the equation below: When the value (calculated using the formula below) exceeds 1 MPa, the Max. operating pressure is 1 MPa. (Max. operating pressure) = 1/4 x (burst pressure drop coefficient) x (burst pressure at 20°C) When using a fluid in liquid form, the surge pressure must be no more than the maximum operating pressure.


• When using a fluid in liquid form, the surge pressure must be no more than the maximum operating pressure.
 A surge pressure higher than the maximum operating pressure can cause breakage of the fitting or bursting of the tubing.
 Note 2) The minimum bending radius is measured using the method shown in the figure at the right.

Note 3) As for other commercial items, there are some cases it is not able to connect due to tolerance of dimensions.

At a temperature of 20°C bend the tubing into a U shape. Then with one side fixed, gradually close the other side and measure 2R at the point where the tubing folds or flattens, etc.

Burst pressure drop curve



Eluting fluorine ion amount Note 4) (µg/g)

Type	Fluorine ion
Eluting amount	0.1 or less

A 15 g piece of fluororesin tubing is cut off, washed in DI water (puer water) and immersed in 15 mL of 25% methyl alcohol extract at room temperature for 24 hours. Then the extract is diluted with DI water (puer water) to be subjected to a quantitative analysis of fluorine ions.

How to Order

Tubing Model

Length Applicable to both metric and inch size

Symbol	Type	Length
10		10 m
20	Roll	20 m
50	HOII	50 m
100		100 m
2S	Straight	2 m

Eluting metal ion amount Note 4) (ng/cm²)

Туре	Al	Fe	Ni	Na	Ca
Eluting amount	4.5	0.3	0.2	7.1	1.3

The interior of the fluororesin tubing is washed with super deionized water. Approximately 20 g of super high purity hydrofluoric acid (48%) is measured and injected into the tubing. The interior wall of the tubing is immersed at normal temperature for one week with both most of the tubing plugged. Then the extract was ditude with super deionized water to be subjected to a quantitative analysis on Al, Fe, Ni. Na and Cab y the stripping methods.

Length Applicable to inch size only

		,
Symbol	Type	Length
16	Roll	50 Ft (16 m)
33	HOII	100 Ft (33 m)

Please refer to the "Series and Specifications' above, as the tubing length differs depending on each size.

Note 4) Figures shown in tables are representative values, not guaranteed values.

Fluoropolymer Tubing (PFA)

Series TLM/TILM

(RoHS)

KQ2 KQB2

KM

KF

M

H/DL L/LL

KC KK

KK130 DM

KDM

KB

KR

KA KOG2

Max. operating temperature: 260°c

22 size variations

Metric size Ø2 to Ø25 (13 sizes)

color variations

Translucent

Blue (Translucent)

Length per roll 10 m, 20 m, 50 m, 100 m

Straight

Inch size

1/8" to 1 1/4" (9 sizes)

Length per roll 10 m, 20 m, 50 m, 100 m 16 m (50 ft), 33 m (100 ft)

Straight

Applications

Photovoltaic LCD HDD cell manufacturing manufacturing

Medical

Compatible with **Food Sanitation Law**

· Compatible with the test conforming to Japan's Food Sanitation Law based on the 370th notice given by the Ministry of Health and Welfare in 1959.

· Complies with FDA (Food and Drug Administration) §177-1550 dissolution test.

manufacturing

Food

KG KFG2

MS

KKA KΡ

LO

MQR

Black (Opaque)

Red (Translucent)

Fluoropolymer Tubing (PFA) **Metric Size**

Series TLM

Series

	Si	ze								Metric size	9					
	Mo	del		TLM0201	TLM0302	TLM0425	TLM0403	TLM0604	TLM0806	TLM1075	TLM1008	TLM1209	TLM1210	TLM1613	TLM1916	TLM2522
Tubing size				ø2 x ø1	ø3 x ø2	ø4 x ø2.5	ø4 x ø3	ø6 x ø4	ø8 x ø6	ø10 x ø7.5	ø10 x ø8	ø12 x ø9	ø12 x ø10	ø16 x ø13	ø19 x ø16	ø25 x ø22
O.D. (mm)			2	3	4	4	6	8	10	10	12	12	16	19	25	
I.D. (mm)				1	2	2.5	3	4	6	7.5	8	9	10	13	16	22
Length	per roll	Color	Symbol	1												
	10 m	Translucent	N							•	•	•	•	•	•	
		Translucent	N	•	•	•	•	•	•	•	•	•	•	•	•	•
	20 m	Red (Translucent)	R	•	•	•	•	•	•	•	•	•	•	•	•	•
Roll		Blue (Translucent)	BU	•	•	•	•	•	•	•	•	•	•	•	•	•
		Black (Opaque)	В	•	•	•	•	•	•	•	•	•	•	•	•	•
	50 m	Translucent	N	•	•	•	•	•	•	•	•	•	•	•	•	•
	100 m	Translucent	N	•	•	•	•	•	•	•	•	•	•	•	•	
Straight	2 m	Translucent	N	•	•	•	•	•	•	•	•	•	•	•	•	•

For details, refer to the table "Series" on page 443.

Specifications

Specifications													
Fluid Note 1) 2) 3) and	Fluid: R	efer to "Ap	plicable F	luid List" o	n page 449	Fitting	s: Fluorop	olymer fitti	ngs series	LQ			
applicable fittings Note 1) 2) 3)	Fluid: A	Fluid: Air, Water, Inert gas Fittings: One-touch fittings KQ2, KQG2, Clean One-touch fittings KP, KP□											
applicable mange		Insert fittings KF, KFG2, Miniature fittings M, MS (Hose nipple type)											
Max. operating pressure (MPa					Refer	to the max	. operating	pressure	curve.				
Min. bending Recommended radius	10	20	20	35	35	60	95	100	100	130	160	220	400
radius (mm) Note 4) Tube close bend radiu	7	15	15	20	20	40	60	65	65	110	130	160	290
Max. operating temperature							260°C						
Material				PFΔ (Fetrafluoro	athylana r	erfluoroall	kovy vinyl	other conc	nlymer)			

Note 1) Fluid varies depending on the applicable fittings

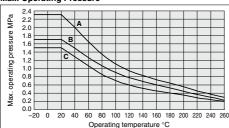
Note 2) When using a liquid fluid, the surge pressure must not exceed the maximum operating pressure. If the surge pressure exceeds the maximum operating pressure, it will result in damage to fittings and tubes. Furthermore, abnormal temperature rise caused by adiabatic compression may result in the tube bursting.

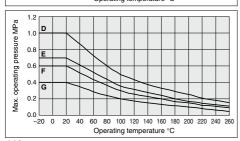
Note 3) Do not use this product in a manner in which the tube is not fixed. Observe the lesser value of the maximum operating

pressure between the tubing and fitting. A material change over a long duration or due to high-temperature may caus leakage. Perform periodic maintenance and replace with a new product immediately when abnormalities are detected. (Refer to "Maintenance" of the tubing precautions on page 451.)

For other precautions, refer to "Fittings & Tubing Precautions" on pages 13 to 16. When using the fluoropolymer fittings, refer to the precautions on pages 395 and 396.

Note 4) Minimum bending radius is measured as shown left as representative values. Use a tube above the recommended minimum bending radius.


- The tube may be bent if used under the recommended minimum bending radius. Therefore, refer to the tube close bend radius and make sure that the tube is not bent or flattened.
- Please note that the tube close bend radius is not warranted because of the value when 2R is measured by the method in the right figure if the tube is bent or flattened, etc.


How to measure the minimum bending radius

At a temperature of 20°C, bend the tubing into a U shape. Fix one end and gradually move the other end closer. Measure 2R at the point where the outside diameter's rate of change is 5%.

Max. Operating Pressure

Group	Model TLM0201 TLM0425 TLM0302 TLM0604 TLM0403 TLM0806 TLM1075 TLM1209 TLM1008 TLM1613 TLM1613 TLM1210 TLM1916	Ma	ax. operating	pressure (MF	a)	
Circup		20°C	100°C	200°C	260°C	
Α	TLM0201	2.3	1.1	0.55	0.3	
В		1.7	0.9	0.45	0.23	
С	TLM0302	1.5	0.7	0.35	0.2	
"	TLM0604	1.5	0.7	0.35	0.2	
	TLM0403					
D	TLM0806		0.5	0.25	0.15	
"	TLM1075		0.5	0.25	0.15	
	TLM1209					
Е	TLM1008	0.7	0.05	0.17	0.11	
-	TLM1613	0.7	0.35	0.17	0.11	
F	TLM1210	0.0	0.0	0.45	0.4	
"	TLM1916	0.6	0.3	0.15	0.1	
G	TLM2522	0.4	0.2	0.1	0.05	

How to Order

Metric size M0425 N - 20

Tubing 4 designation

Color	indication
Symbol	Color
N	Translucent
R	Red (Translucent)
BU	Blue (Translucent)
В	Black (Opaque)

Length per roll

Symbol	Type	Length
10		10 m
20	Boll	20 m
50	Holl	50 m
100		100 m
2S	Straight	2 m

Note) Refer to the table "Series" above, as the tubing length differs depending on each size.

Fluoropolymer Tubing (PFA) Inch Size

Series TILM

Sarias

Sen													
	Si	ze						Inch size					
	Mo	del		TILM01	TILMB01	TILM05	TILM07	TILM11	TILM13	TILM19	TILM25	TILM32	
	Tubin	g size		1/8" x 0.086"	1/8" x 1/16"	3/16" x 1/8"	1/4" x 5/32"	3/8" x 1/4"	1/2" x 3/8"	3/4" x 5/8"	1" x 7/8"	11/4" x 11/10"	
	D.D.	inch		1/8" 1/8"		3/16"	1/4"	3/8"	1/2"	3/4"	1"	11/4"	
,	J.D.	mm		3.	18	4.75	6.35	9.53	12.7	19.05	25.4	31.75	
	I.D.	inch		0.086"	1/16"	1/8"	5/32"	1/4"	3/8"	5/8"	7/8"	11/10"	
	I.D.	mm		2.18	1.58	3.15	3.95	6.33	9.5	15.85	22.2	27.95	
Lengtl	n per roll	Color	Symbol										
	10 m	Translucent	N	·	•			•	•	•	•	•	
		Translucent	N	•	•	•	•	•	•	•	•	•	
		Red (Translucent)	R	•	•	•	•	•	•	•	•	•	
	20 m	Blue (Translucent)	BU	•	•	•	•	•	•	•	•	•	
Roll		Black (Opaque)	В	•	•	•	•	•	•	•	•	•	
	50 m	Translucent	N	•		•	•	•	•	•	•	•	
	100 m	Translucent	N	•		•	•	•	•	•			
	16 m (50 ft)	Translucent	N	•	•	•	•	•	•	•	•	•	
	33 m (100 ft)	Translucent	N	•	•	•	•	•	•	•	•	•	
Straight	2 m	Translucent	N	•		•	•	•	•	•	•	•	
Metric O.D. size								O.D. 5/32* is available in ø4 metric tubing, and O.D. 5/16* is available					

Specifications

ppeemeations										
Fluid Note 1) 2) 3) and		Fluid: Refer t	Fluid: Refer to "Applicable Fluid List" on page 449. Fittings: Fluoropolymer fittings series LQ							
applicable fittings Note 1) 2) 3)			Fluid: Air, Water, Inert gas Fittings: One-touch fittings KQ2, KQG2, Insert fittings KFG2							
Max. operating pressure (MPa)				R	efer to the max	. operating pre	ssure curve.			
Min. bending	Recommended radius	20	10	25	35	60	95	220	400	500
radius (mm) Note 4)	Tube close bend radius	12	6	20	20	30	60	160	290	360
Max. operating temperature		260°C								
Material		PFA (Tetrafluoroethylene perfluoroalkoxy vinyl ether copolymer)								

Note 1) Fluid varies depending on the applicable fittings

Note 2) When using a liquid fluid, the surge pressure must not exceed the maximum operating pressure. If the surge pressure exceeds the maximum operating pressure, it will result in damage to fittings and tubes. Furthermore, abnormal

temperature rise caused by adiabatic compression may result in the tube bursting. Note 3) Do not use this product in a manner in which the tube is not fixed. Observe the lesser value of the maximum operating pressure between the tube and fitting. A material change over a long duration or due to high-temperature may cause leakage. Perform periodic maintenance and replace with a new product immediately when abnormalities are detected.

(Refer to "Maintenance" of the tubing precautions on page 451.)

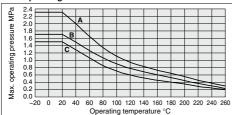
For other precautions, refer to "Fittings & Tubing Precautions" on pages 13 to 16. When using the fluoropolymer fittings. refer to the precautions on pages 395 and 396.

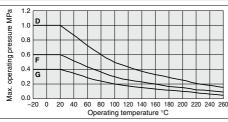
Note 4) Minimum bending radius is measured as shown left as representative values.

32

Use a tube above the recommended minimum bending radius.

- The tube may be bent if used under the recommended minimum bending radius. Therefore, refer to the tube close bend radius and make sure that the tube is not bent or flattened.
- . Please note that the tube close bend radius is not warranted because of the value when 2R is measured by the method in the right figure if the tube is bent or flattened, etc


How to measure the minimum bending radius



in ø8 metric tubing. For details, refer to the table "Series" on page 442.

At a temperature of 20°C, bend the tubing into a U shape. Fix one end and gradually move the other end closer. Measure 2R at the point where the outside diameter's rate of change is 5%.

Max. Operating Pressure

Group	Model	Max. operating pressure (MPa)							
Group	iviouei	20°C	100°C	200°C	260°C				
Α	TILMB01	2.3	1.1	0.55	0.3				
В	TILM07	1.7	0.9	0.45	0.23				
С	TILM05	1.5	0.7	0.35	0.2				
"	TILM11	1.5							
D	TILM01			0.05	0.45				
"	TILM13	'	0.5	0.25	0.15				
F	TILM19	0.6	0.3	0.15	0.1				
G	TILM25	0.4	0.2	0.1	0.05				
G	TILM32	0.4			0.05				

How to Order

Inch size

TILM01

Tubing • designation

Color	indication
Symbol	Color
N	Translucent

Color	Color indication					
Symbol	Color					
N	Translucent					
R	Red (Translucent)					
BU	Blue (Translucent)					
В	Black (Opaque)					

Length per roll

Type	Length
	10 m
Roll	20 m
	50 m
	100 m
	16 m (50 ft)
	33 m (100 ft)
Straight	2 m
	Roll

Note) Refer to the table "Series" above, as the tubing length differs depending on each size.

K02 KQB2

H/DL L/LL

KC

KK130 DM

KDM

KB

KR

KA

KQG2 KG

KFG2

MS

KKA

KP L₀

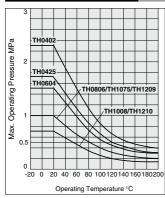
MQR

FEP Tubing (Fluoropolymer) Metric Size

Series TH

Operating Temperature: Max. 200°C It varies depending on the operating pressure. Refer

to the graph for the maximum operating pressure. Compatible with the Food Sanitation Law


- . Compatible with the test conforming to the Food Sanitation Law based on the 370th notice given by the Ministry of Health and Welfare in 1959.
- · Complies with FDA (Food and Drug Administration) §177-1550 dissolution test.

How to measure the minimum bending radius.

At a temperature of 20°C, bend the tubing into a U shape. Fix one end and gradually move the other end closer. Measure 2R at the point where the outside diameter's rate of change is 5%.

Max. Operating Pressure

Note) The maximum operating pressure varies dependant on the I.D. bore size even if the O.D. is the same.

Series

—-20 m roll

☐-100 m roll

					Metri	c size			
Model		TH0402	TH0425	TH0604	TH0806	TH1075	TH1008	TH1209	TH1210
Tubing O.D. ((mm)	4	4	6	8	10	10	12	12
Tubing I.D. (mm)	2	2.5	4	6	7.5	8	9	10
Color	Symbol								
Translucent	N	⊢ •⊢	─•		─ •	─		─ ┣	- • -
Red (Translucent)	R	—	-	-	-	-	-	——	-
Blue (Translucent)	BU	-	-∳-		-∳-				-∳-
Black (Opaque)	В	-	-	——	——	——			
		5/3	ninal size	In	ch nominal si 5/16"	ze			
Specifica	itior	าร 📗			- 1				

Specification		15										
Fluid			Air, Water Note 1), Inert gas									
Applicable fittings	Fluoro	One-touch fittings, Insert fittings Fluoropolymer fittings: Series LQ Note 3) Miniature fittings: Series M, MS (Hose nipple type)										
	20°C	2.3	1.7	1.5		1		0.7	7	1	0.	7
Max. operating	100°C	0.85	0.6	0.55		0.4		0.2	5 (0.4	0.2	25
pressure (MPa)	200°C	0.4	0.3	0.3		0.2		0.1	(0.2	0.	1
		Refer to below "Max. Operating Pressure."										
Min. bending Rec radius Rec	ommended us	15	20	35	60	9	5	100			13	30
(mm) Note 4) Tube	close bend is	10	15	20	40	6	0	65 1		11	0	
Operating temp	Air, Inert gas: -20 to 200°C Water: 0 to 100°C (No freezing)											
Material			FEP	(Fluorina	ted Et	hylene	Prop	ylen	e Res	in)		

Note 1) When using a fluid in liquid form, the surge pressure must not exceed the maximum operating pressure. A surge pressure higher than the maximum operating pressure can cause breakage of the fittings, or rupture of the tubing. Furthermore, an abnormal temperature increase due to adiabatic compression can also result in ruptured tubing. Note 2) Do not use in locations where the FEP tubing will move.

Be sure to operate under the maximum operating pressure conditions using the lower maximum operating specification of either the tubing or fittings.

After long term use or under high temperatures, some fittings leakage may occur due to material deterioration with age. Perform periodic inspections, and if any leakage is detected, replace with a new product immediately. When the insert and miniature fittings are used over extended periods of time, it may cause leakage due to the material deterioration of age. In such a case, give an additional tightening to the tube connection part. If leakage still occurs after giving an additional tightening, replace the fitting with a new product. For other precautions, refer to "Fittings & Tubing Precautions". When using the fluoropolymer fittings, refer to the precautions on pages 395 and 396. Select the size after confirming O.D. and I.D.

Note 3) TH0402, TH0425, TH1075 and TH1209 are not available because of different internal diameters.

Note 4) The minimum bending radius is the representative value measured as shown in the left figure.

- . Use a tube above the recommended minimum bending radius.
 - . The tubing may be bent if used under the recommended minimum bending radius. Therefore, refer to the tube close bend radius and make sure that the tubing is not bent or flattened.
 - . Please note that the tube close bend radius is not warranted because of the value when 2R is measured by the method in the left figure if the tubing is bent or flattened, etc.

How to Order

Metric size

TH0604

Indication of tubing model

 	Color indication
Symbol	Color
N	Translucent
В	Red (Translucent)

Blue (Translucent)

Black (Opaque)

ļμ	en	gth	per	roll
_	-	-	1	

Symbol	Roll size
20	20 m roll
100 Note)	100 m roll

with translucent (color indication: N) only.

Made to Order

(Please contact SMC for specifications in detail, dimensions, delivery and specifications other than those mentioned above.)

Reinforced corrugated cardboard specification longer length reel

ø6, Translucent only: Suffix "-X64" to the end of part number. Ex.) TH0604N-500-X64

Made to Order Availability

Part no.	Length Model	TH0604N	Color
X64	250 m reel	0	Translucent
X64	500 m reel	0	Translucent

FEP Tubing (Fluoropolymer) Inch Size

Series TIH

KQ2 KQB2

KM KF

H/DL L/LL

KC

KK

KK130

DM

KDM

KB

KR KA

KQG2

KG

KFG2

MS

KKA

KP

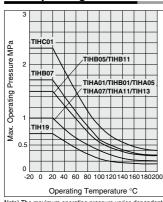
LO

MQR

Operating Temperature: Max. 200°C

It varies depending on the operating pressure. Refer to the graph for the maximum operating pressure.

Compatible with the Food Sanitation Law


- Compatible with the test conforming to the Food Sanitation Law based on the 370th notice given by the Ministry of Health and Welfare in 1959.
- Complies with FDA (Food and Drug Administration) §177-1550 dissolution test.

How to measure the minimum bending radius.

At a temperature of 20°C, bend the tubing into a U shape. Fix one end and gradually move the other end closer. Measure 2R at the point where the outside diameter's rate of change is 5%.

Max. Operating Pressure

Note) The maximum operating pressure varies dependant on the I.D. bore size even if the O.D. is the same.

Series

■-50 ft (16 m) roll □-100 ft (33 m) roll

Series	●-50 ft (16 m) roll □-100 ft (33 m) rol											
						Ir	nch siz	e				
Model		TIHA01 TIHB01 TIHC01 TIHA05 TIHB05 TIHA07 TIHB07 TIHA11 TIHB11 TIH13 T							TIH19			
Tubina O D	inch		1/8"		3/	16"	1/	4"	3/	8"	1/2"	3/4"
Tubing O.D.	mm	3.18			4.	75	6.35		9.	53	3 12.7	
Tubing I.D.	inch	0.093"	0.086"	0.065"	0.137"	0.124" (1/8")	0.18"	0.156" (5/32")	0.275"	0.25" (1/4")	0.374" (3/8")	0.624" (5/8")
	mm	2.36	2.18	1.65	3.48	3.15	4.57	3.95	6.99	6.33	9.5	15.85
Color	Symbol	1										
Translucent	N		- •	- •	- • - • • • • • • • 		- • - • • • • • • • 					
Red (Translucent)	R	$\vdash \overline{lacktrian}$	-	-	-	-	-	——	-	——	——	-
Blue (Translucent)	BU	┝╈╌		-∳-	-∳-	-∳-						
Black (Opaque)	В		_	_	_	_	_	_		_	_	_

Specifications

	41101												
		Air, Water Note 1), Inert gas											
ittin	gs Note 2)	One-touch fittings, Fluoropolymer fittings: Series LQ Note 3)											
	20°C	1	I	2.3	1	1.5	1	1.7	' i	1 1	.5	1	0.7
ng	100°C	0.	.4	0.85	0.4	0.55	0.4	0.6	6 0.	4 0	.55	0.4	0.25
Pa)	200°C	0.2		0.4	0.2	0.3	0.2	0.3	3 0.	.2 0	0.3	0.2	0.1
	Refer to below "Max. Operating Pressure."												
Reco radiu	mmended s	25	20	10	35	25	55	35	8	5 6	30	95	220
		20	12	7	25	20	35	20	5	5 (30	60	160
Operating temperature Air, Inert gas: -20 to 200°C				Water: 0 to 100°C (No freezing)									
		FEP (Fluorinated Ethylene Propylene Resin)											
	itting Pa)	20°C 100°C 200°C 200°C	20°C 1 1 1 1 1 1 1 1 1	Decommended 20 Concentration Concentra	Ititings Note 2 One-touch fittings 20°C 1 2.3	Air, Intert gas: -20 to 2 Intert gas: -	Air, Wate Air,	Air, Water Note 1 Air, Water Note 1	Air, Water Note 1) Ine Intings Note 2 One-touch fittings, Fluoropolymer fittings 20°C 1 2.3 1 1.5 1 1.7	Air, Water Note 1), Inert gas Itilings Note 2 One-touch fittings, Fluoropolymer fittings: Series 20°C 1 2.3 1 1.5 1 1.7 7 100°C 0.4 0.85 0.4 0.55 0.4 0.6 0.9 200°C 0.2 0.4 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.5 0.4 0.6 0.5 0.4 0.6 0.5 0.4 0.6 0.5 0.4 0.6 0.5 0.4 0.6 0.5 0.4 0.6 0.5 0.4 0.6 0.5 0.4 0.6 0.5 0.4 0.6 0.5 0.4 0.6 0.5 0.	Air, Water Note 1, Inert gas	Air, Water Note 1, Inert gas 1, Inert gas	Air, Water Note 1), Inert gas

Note 1) When using a fluid in liquid form, the surge pressure must not exceed the maximum operating pressure. A surge pressure higher than the maximum operating pressure can cause breakage of the fittings, or rupture of the tubing. Furthermore, an abnormal temperature increase due to adiabatic compression can also result in ruptured tubing. Note 2) Do not use in locations where the FEP tubing will move.

Be sure to operate under the maximum operating pressure conditions using the lower maximum operating specification of either the tubing or fittings.

After long term use or under high temperatures, some fittings leakage may occur due to material deterioration with age. Perform periodic inspections, and if any leakage is detected, replace with a new product immediately. When the insert and miniature fittings are used over extended periods of time, it may cause leakage due to the material deterioration of age. In such a case, give an additional tightening to the tube connection part. If leakage still occurs after giving an additional tightening, replace the fitting with a new product. For other precautions, refer to "Fittings & Tubing Precautions". When using the fluoropolymer fittings, refer to the precautions on pages 395 and 396. Select the size after confirming O.D. and I.D.

Note 3) TIHA01, TIHC01, TIHA05, TIHA07 and TIHA11 are not available because of different internal diameters.

Note 4) The minimum bending radius is the representative value measured as shown in the left figure.

- . Use a tube above the recommended minimum bending radius.
- The tubing may be bent if used under the recommended minimum bending radius. Therefore, refer to the tube close bend radius and make sure that the tubing is not bent or flattened.
- Please note that the tube close bend radius is not warranted because of the value when 2R is measured by the
 method in the left figure if the tubing is bent or flattened, etc.

How to Order

Inch size

TIHA01 N - 16

Indication of tubing model Color indication

	Color indication •
Symbol	Color
N	Translucent
R	Red (Translucent)
BU	Blue (Translucent)
В	Black (Opaque)

Length per roll

Symbol	Roll size
16	50 ft (16 m) roll
33 Note)	100 ft (33 m) roll

Note) 100 ft (33 m) roll is available with translucent (color indication: N) only.

445 ®

Soft Fluoropolymer Tubing Metric Size

Series TD

Flexibility: Improved by approx. 20%

* SMC comparison (Fluoropolymer tubing, Series TL/TIL)

Compatible with the Food Sanitation Law

- Compatible with the test conforming to the Food Sanitation Law based on the 370th notice given by the Ministry of Health and Welfare in 1959.
- Complies with FDA (Food and Drug Administration) §177-1550 dissolution test.

Operating Temperature: Max. 260°C

It varies depending on the operating pressure. Refer to the graph for the maximum operating pressure.

How to measure the minimum bending radius

Bend the tubing into the U-form at a temperature of 20°C. Fix one end and close loop gradually. Measure 2R when the deformed ratio of the tubing diameter at bending reaches 5%.

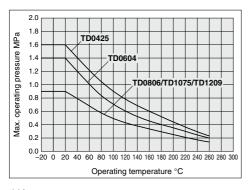
Model/Specifications

wode/specifications									
Size	•			Metric size					
Mode	el	TD0425	TD0604	TD0806	TD1075	TD1209			
Tubing O.D.	(mm)	4	6	8	10	12			
Tubing I.D. (I	mm)	2.5	4	6	7.5	9			
Roll	10 m	•	•	•	•	•			
noii	20 m	•	•	•	•	•			
Color			Translu	cent (materia	al color)	•			
Applicable fluid Refer to the applicable fluid in page 448.					8.				
Fluid Note 1)		Air, Water Note 1), Inert gas							
Applicable fit	tings Note 2)	Insert Fittings KF series Stainless Steel 316 Insert Fittings KFG series Miniature fittings M, MS series (Hose nipple type) Fluoropolymer fitting series LQ							
	20°C	1.6	1.4	0.9	0.9	0.9			
Max. operating	100°C	0.9	0.7	0.5	0.5	0.5			
pressure (MPa)	200°C	0.45	0.35	0.25	0.25	0.25			
	260°C	0.23	0.2	0.15	0.15	0.15			
Min. bending	Recommended radius	15	25	45	55	75			
radius (mm) Note 3)	Tube close bend radius	8	16	31	35	41			
Max. operating tempera	ture (fixed usage)	260°C							
Material	1 0 1 1 0 7					esin)			

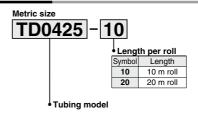
Note 1) When using a liquid fluid, the surge pressure must be under the maximum operating pressure. If the surge pressure exceeds the maximum operating pressure, it will result in damage to fittings and tubing. Furthermore, abnormal temperature rise caused by adiabatic compression may result in the tubing bursting.

Note 2) Do not use this product in a manner in which the tubing is not fixed.

Observe the lesser value of the maximum operating pressure between the tubing and fittings. A material change over a long duration or due to high-temperature may cause leakage. Perform periodic maintenance and replace with a new product immediately when abnormalities are detected.


(Refer to "Maintenance" of the tubing precautions on page 451.)

For other precautions, refer to "Fittings & Tubing Precautions" on pages 13 to 16. When using the fluoropolymer fittings, refer to the precautions on pages 395 and 396.


Note 3) The minimum bending radius is the representative value measured as shown in the left figure.

- Use a tube above the recommended minimum bending radius.
- The tubing may be bent if used under the recommended minimum bending radius.
 Therefore, refer to the tube close bend radius and make sure that the tubing is not bent or flattened.
- Please note that the tube close bend radius is not warranted because of the value when 2R is measured by the method in the left figure if the tubing is bent or flattened, etc.

Maximum Operating Pressure

How to Order

Soft Fluoropolymer Tubing Inch Size

Series TID

Flexibility: Improved by approx. 20%

* SMC comparison (Fluoropolymer tubing, Series TL/TIL)

Compatible with the Food Sanitation Law

- Compatible with the test conforming to the Food Sanitation Law based on the 370th notice given by the Ministry of Health and Welfare in 1959.
- Complies with FDA (Food and Drug Administration) §177-1550 dissolution test.

Operating Temperature: Max. 260°C

It varies depending on the operating pressure. Refer to the graph for the maximum operating pressure.

How to measure the minimum bending radius

Bend the tubing into the U-form at a temperature of 20°C. Fix one end and close loop gradually. Measure 2R when the deformed ratio of the tubing diameter at bending reaches 5%.

Model/Specifications

Size)	Inch size							
Mode	el	TID01	TID05	TID07	TID11	TID13			
Tubing O.D.	inch	1/8"	3/16"	1/4"	3/8"	1/2"			
Tubing O.D.	mm	3.18	4.75	6.35	9.53	12.7			
Tubing I.D. inch		0.086"	0.124" (1/8")	0.156" (5/32")	0.25" (1/4")	0.374" (3/8")			
	mm	2.18	3.15	3.95	6.33	9.5			
Roll	8 m	•	•	•	•	•			
NOII	16 m	•	•	•	•	•			
Color		Translucent (material color)							
Applicable fl	uid	Refer to the applicable fluid in page 448.							
Fluid Note 1)		Air, Water Note 1), Inert gas							
Applicable fit	tings Note 2)	Fluoropolymer fitting series LQ							
	20°C	1.4	1.4	1.6	1.4	0.9			
Max. operating	100°C	0.7	0.7	0.9	0.7	0.5			
pressure (MPa)	200°C	0.35	0.35	0.45	0.35	0.25			
	260°C	0.2	0.2	0.23	0.2	0.15			
Min. bending	Recommended radius	15	20	25	40	75			
radius (mm) Note 3)	Tube close bend radius	9	10	15	23	42			
Max. operating tempera	ture (fixed usage)			260°C					
Material		Mod	ified PTFE (Polytetrafluo	roethylene r	esin)			

Note 1) When using a liquid fluid, the surge pressure must be under the maximum operating pressure. If the surge pressure exceeds the maximum operating pressure, it will result in damage to fittings and tubing. Furthermore, abnormal temperature rise caused by adiabatic compression may result in the tubing bursting.

Note 2) Do not use this product in a matter in which the modified PTFE tubing is not fixed.

Observe the lesser value of the maximum operating pressure between the tubing and fittings.

A material change over a long duration or due to high-temperature may cause leakage.

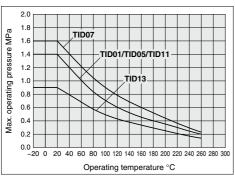
Perform periodic maintenance and replace with a new product immediately when abnormalities are detected.

(Refer to "Maintenance" of the tubing precautions on page 451.)

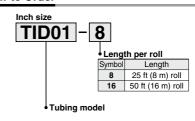
For other precautions, refer to "Fittings & Tubing Precautions" on pages 13 to 16. When using the fluoropolymer fittings, refer to the precautions on pages 395 and 396.

Note 3) The minimum bending radius is the representative value measured as shown in the left figure.

• Use a tube above the recommended minimum bending radius.


- The tubing may be bent if used under the recommended minimum bending radius.

 Therefore, refor to the time sleep hand radius and make give that the time is not hand or fill.


 Therefore, refor to the time sleep hand radius and make give that the time is not hand or fill.
- Therefore, refer to the tube close bend radius and make sure that the tubing is not bent or flattened.

 Please note that the tube close bend radius is not warranted because of the value when 2R is measured by the method in the left floure if the tubing is bent or flattened, etc.

Maximum Operating Pressure

How to Order

KQ2

KQB2

KM

KF

H/DL L/LL

KC

KK130

DM KDM

KB

KR

KA

KQG2 KG

KFG2

MS

KKA KP

LQ

MQR

T

Series TL/TIL/TD/TID Applicable Fluid List

Chemical resistance of Fluoropolymer Super PFA, modified PTFE material

Chemicals in the list below are chemically inert Note) to Super PFA, modified PTFE material. Possible physical effects may occur such as penetration and swelling due to temperature, pressure and chemical concentration. To use Super PFA, modified PTFE tube in a chemical environment, tests should be performed with the same environment to ensure no problem occurs with operating environment.

1,1,1-Trichloroethane	Formic acid	Trichloroethylene
1,1,2-Trichloroethane	Ethyl formate	Trichloroacetic acid
1,2,3-Trichloropropane	Propyl formate	Toluene
1,2-Dichlorobutane	Methyl formate	Naphtha
2,4-Dichlorotoluene	Xylene	Carbon dioxide
2-chloropropane	Glycol	Nitrogen dioxide
2-nitro-2-methylpropane	Glycerine	Nitrobenzene
2-nitrobutanol	Cresol	Nitromethane
Pentabasic benzamide	Chromic acid	Carbon disulfide
Hydrochlorofluorocarbon-22	Chloracetic acid	Piperidine
N-octadecanol	Chlorosulfonic acid	Pyridine
N-butylamine	Chloroform	Pyrogallol
o-chlorotoluene	Paraffinum liquidum	Phenol
Isobutyl adipate	Acetate	Butanol
Acetyl chloride	Amyl acetate	Phthalic acid
Acetophenone	Ethyl acetate	Hydrofluoric acid
Acetone	Potassium	Furan
Aniline	Butyl acetate	Ethyl propionate
Sulfurous acid gas	Propyl acetate	Propyl propionate
Allyl chloride	Methyl acetate	Methylpropionate
Benzoic acid	Salicylic acid	Propylene chloride
Ammonium	Sodium hypochlorite	Bromobenzene
Sulfur	Diisobutyl ketone	Hexachlorethane
Isoamyl alcohol	Diethylamine	Hexane
Isooctane	Carbon tetrachloride	Heptane
Ethanol	Dioxane	Benzyl alcohol
Ethyl ether	Cyclohexanone	Benzaldehyde
Ethylene glycol	Cyclohexane	Benzine
Ethylene chloride	Dichloroethylene	Benzoyl chloride
Ethylenediamine	Dichloropropylene	Benzonitrile
Zinc chloride	Dibutyl phthalate	Pentachloroethane
Aluminum chloride	Dimethyl ether	Boric acid
Ammonium chloride	Dimethylsulfoxide	Sodium boric acid
Calcium chloride	Dimethylformamide	Formaldehyde
Ferrous chloride	Hydrobromic acid	Acetic anhydride
Mercuric chloride	Potassium dichromate	Methanol
Stannous chloride	Bromine	Methyl ether
Ferric chloride	DI water (Pure water)	Methyl ethyl ketone
Cupric chloride	Nitric acid	Methylene chloride
Sodium chloride	Ammonium hydroxide	Ethyl butyrate
Magnesium chloride	Potassium hydroxide	Methyl butyrate
Hydrochloric acid	Sodium hydroxide	Hydrogen sulfide
Chlorine	Soap, detergent	Sulphuric acid
Aqua regia	Diethyl carbonate	Zinc sulfate
Ozone	Sodium carbonate	Ammonium sulfate
Oleic acid	Tetrachloroethane	Ferrous sulfate
Perchlorate	Tetrachioroethylene	Copper sulfate
Hydrogen peroxide	Tetrahydrofuran	Phosphoric acid
Natrium peroxide	Tetrahydroiuran	
Gasoline	Triethanolamine	Sodium phosphate
Potassium permanganate	Triethylamine	

Note) "Chemically inert" means - not to cause any chemical reaction.

Series TLM/TILM Applicable Fluid List

Chemical resistance of Fluoropolymer PFA material

Chemicals in the list below are chemically inert Note), to PFA material. Possible physical effects may occur such as penetration and swelling due to temperature, pressure and chemical concentration.

To use PFA tube in a chemical environment, tests should be performed with the same environment to ensure no problem occurs with operating environment.

Acetate	Butyl stearate	Ethylene dicloride	Malic acid	Salicylic acid
Acetic anhydride	Calcium acetate	Ethylene glycol	Mercaptan	Silicate ester
Acetone	Calcium acetate Calcium bisulfite	Ethylene oxide	Mercuric chloride	Silicone grease
Acetylene	Calcium chloride			Silicone grease Silicone oil
Acetylene	Calcium chioride Calcium hydroxide	Ethylenediamine	Mercury Methyl acetate	Silver nitrate
	,	Fatty acid		Sodium bicarbonate
Aluminum acetate	Calcium hypochlorite	Ferric chloride	Methyl alcohol	
Aluminum nitrate	Calcium nitrate	Ferric nitrate	Methyl chloride	Sodium bisulfate
Aluminum bromide	Calcium sulfide	Ferric sulfate	Methyl ethyl ketone	Sodium bisulfite
Aluminum chloride	Carbon dioxide	Fluorboric acid	Methyl isobutyl ketone	Sodium hypochlorite (5%)
Aluminum fluoride	Carbon disulfide	Fluorobenzene	Methyl methacrylate	Sodium metaphosphate
Aluminum sulfate	Carbonic acid	Fluosilicic acid	Methylene dichloride	Sodium nitrate
Ammonia gas	Castor oil	Formaldehyde	Mineral oil	Sodium perborate
Ammonium carbonate	Caustic soda (30%)	Formic acid	Monochloroacetic acid	Sodium phosphate
Ammonium chloride	Cellosolve	Furfural	Monochlorobenzene	Sodium sulfite
Ammonium hydroxide	Chlorosulfonic acid	Gasoline	Monoethanolamine	Sodium thiosulfate
Ammonium nitrate	Chlorotoluene	Gelatine	Naphtha	Soybean oil
Ammonium nitrite	Chromic acid	Glauber's salt	Naphthalene	Stannic chloride
Ammonium persulfate	Citric acid	Glucose	Naphthenic acid	Stearic acid
Ammonium phosphate	Coconut oil	Glue	Natrium peroxide	Styrene
Ammonium sulfate	Copper cyanide	Glycerine	Natural gas	Sucrose solution
Amyl acetate	Copper sulfate	Grease	Nickel acetate	Sulfur
Amyl alcohol	Corn oil	Hexaldehyde	Nickel chloride	Sulfur chloride
Amyl borate	Cottonseed oil	Hexane	Nickel sulfate	Sulfuric acid (98%)
Amyl naphthalene	Creosote oil	Hexyl alcohol	Nitric acid (60%)	Sulfurous acid gas
Aniline	Cresol	Hydrobromic acid	Nitrobenzene	Tannic acid
Aniline dye	Cupric chloride	Hydrochloric acid	Nitroethane	Tartaric acid
Animal oil (Lard oil)	Cyclohexane	Hydrocyanic acid	Nitromethane	Terpineol
Aqua regia	Cyclohexanol	Hydrofluoric acid (49%)	Nitropropane	Tetrachloroethane
Arsenic acid	Cyclohexanone (Anon)	Hydrofluoric acid anhydrous	Octyl alcohol	Tetraethyl lead
Asphalt	Dibutyl phthalate	Hydrogen peroxide (30%)	Oxalic acid	Tetrahydrofuran
Barium chloride	Dichlorobenzene	Hydrogen sulfide	Oxygen	Tetralin
Barium hydroxide	Diethyl sebacate	Hydroquinone	Ozone	Thionyl chloride
Barium sulfate	Diethylene glycol	Hypochlorous acid	Palmitic acid	Triacetin
Barium sulfide	Diisopropyl keton	Isobutyl alcohol	Perchlorate	Tributoxy ethyl phosphate
Beer	Dioctyl phthalate	Isooctane	Perchloroethylene	Tributyl phosphate
Beet sugar liquors	Dioctyl sebacate	Isopropyl acetate	Petroleum	Trichloroethylene
Benzaldehyde	Dipentene (Limonene)	Isopropyl alcohol	Phenol	Tricresyl phosphate
Benzine	Diphenyl	Isopropyl ether	Phosphoric acid (75%)	Triethanolamine
Benzene (Benzol)	Diphenyl oxide	Kerosene	Picric acid	Tung oil
Benzyl alcohol	Epichlorohydrin	Lead acetate	Piperidine	Turpentine oil
Benzyl benzoate	Ethanolamine	Lead nitrate	Potassium chloride	Vegetable oil
Benzyl chloride	Ethyl acetate	Lead sulfamate	Potassium dichromate	Vinegar
Borax	Ethyl acetoacetate	Linolenic acid	Potassium hydroxide	Water
Boric acid	Ethyl acrylate	Linseed oil	Potassium nitrate	Whiskey
Bromine	Ethyl alcohol	Liquid ammonia	Potassium permanganate	Xylene
Bunker oil	Ethyl benzene	LPG (Liquefied petroleum gas)	Potassium sulfate	Zeolite
Butane	Ethyl cellulose	Lubricating oil	Propyl acetate	Zinc acetate
Butter	Ethyl chloride	Magnesium chloride	Propyl alcohol	Zinc chloride
Butyl acetate	Ethyl oxalate	Magnesium hydroxide	Propylene	Zinc sulfide
Butyl acrylate	Ethyl silicate	Magnesium sulfate	Pyridine	
Butyl alcohol (Butanol)	Ethylene chlorohydrin	Maleic acid	Pyrrole	
Daty: alconor (Datanol)	Laryione onioronyuilli		1 311016	

Note) "Chemically inert" means - not to cause any chemical reaction.

KQ2 KQB2

KM KF

KK KK130 DM KDM KB

KQG2 KG KFG2 MS KKA KP LQ

Series TH/TIH Applicable Fluid List

Chemical Resistance of Fluoropolymer FEP Material

Chemicals in the list below are chemically inert Note) to FEP material, however physical properties may be effected by temperature or pressure change.

Please make sure that operating conditions do not cause problems since the use of FEP tubing under chemical environment is unsecured.

2-nitro-2-methyl propanol	Chloroform	Nitromethane
2-nitrobutanol	Paraffinum liquidum	Perchloroethylene
Pentabasic benzamide	Allyl acetate	Perphloroxylene
N-butylamine	Ethyl acetate	Unsymmetrical dimethylhydrazine
N-octadecanol	Potassium	Hydrazine
N-butyl acetate	Butyl acetate	Pinene
O-cresol	Sodium hypochlorite	Piperidine
Di-isobutyl adipate	Carbon tetrachloride	Glacial acetic acid (Acetic acid)
Acetophenone	Dioxane	Pyridine
Acetone	Cyclohexanone	Phenol
Alniline	Cyclohexane	Phthalic acid
Abietic acid	Dimethyl ether	Dybutyl phthalate
Sulfuric chloride	Dimethylsulfoxide	Dimethyl phthalate
Isooctane	Dimethylformamide	Hydrofluoric acid
Liquid ammonia	Bromine	Naphthalene fluoride
Ethyl alcohol	DI water (Pure water)	Nitrobenzene fluoride
Ethyl ether	Nitric acid	Furan
Ethylene glycol	Mercury	Hexachlorethane
Ethylenediamine	Ammonium hydroxide	Hexane
Zinc chloride	Potassium hydroxide	Ethyl hexanoate
Aluminum chloride	Sodium hydroxide	Phenylcarbinol
Ammonium chloride	Cetane	Benzaldehyde
Calcium chloride	Soap, detergent	Benzonitrile
Sulfuric chloride	Dibutyl sebacate	Borax
Iron chloride (III)	Diethyl carbonate	Boric acid
Benzoyl chloride	Tetrachloroethylene	Formic aldehyde (Formalin)
Magnesium chloride	Tetrahydrofuran	Acrylic anhydride
Hydrochloric acid	Tetrabromoethane	Acetic anhydride
Chlorine (absolute)	Triethanolamine	Methacrylic acid
Aqua regia	Trichloroethylene	Allyl methacrylate
Ozone	Trichloroacetic acid	Vinyl methacrylate
Hydrogen peroxide	Toluene	Methyl alcohol
Natrium peroxide	Naphtha	Methyl ethyl ketone
Gasoline	Naphthalene	Methylene chloride
Permanganate	Naphthol	Sulphuric acid
Formic acid	Lead	Phosphoric acid
Xylene	Carbon dioxide	Iron phosphate (III)
Chromic acid	Nitrogen dioxide	Tri-n-butyl phosphate
Chlorosulfonic acid	Nitrobenzene	Tricresyl phosphate

Note) "Chemically inert" means - not to cause any chemical reaction.

Reference cited: Teflon®, the fluoropolymer handbook, Manual for the chemical applications of Teflon®. Du Pond-Mitsui Fluorochemicals Co., Ltd.

Teflon® is a registered trademark for the fluoropolymer produced by E.I du Pond de Nemours & Company (Inc.) and Du Pond-Mitsui Fluorochemicals Co., Ltd.

Series TL/TIL/TLM/TILM/TD/TID/TH/TIH Tubing/Precautions

Be sure to read before handling.

Selection

⚠ Warning

1. Confirm the specifications.

Products represented in this catalog are designed only for use in compressed air systems (including vacuum).

Do not operate at pressures or temperatures, etc., beyond the range of specifications, as this can cause damage or malfunction. (Refer to the specifications.)

2. In case of using the product for medical care

This product is designed for use with compressed air system applications for medical care purposes. Do not use in contact with human bodily fluids, body tissues or transfer applications to a human living body.

↑ Caution

1. Do not use in locations where the connecting threads and tubing connection will slide or rotate.

The connecting threads and tubing connection will come apart under these conditions.

- Use tubing at or above the minimum bending radius. Using below the minimum bending radius can cause breakage or flattening of the tubing.
- Never use the tubing for anything flammable, explosive or toxic such as gas, fuel gas, or cooling mediums etc.

Because the contents may penetrate outward.

4. Use the fittings applicable to the tubing size.

Mounting

 Confirm model no., size, etc. before installing. Check tubing for damage, gouges, cracks, etc.

[TLM/TILM]

The TLM and TILM series do not have the model number displayed on the product due to the resin material used. If tubing without a model label is mixed with other tubing which also does not have a model label, it is impossible to identify the model. Please avoid mixing the products with other models while it is being used and/or stored.

- When tubing is connected, consider factors such as changes in the tubing length due to pressure, and allow sufficient leeway.
- 3. Do not apply unnecessary forces such as twisting, pulling, moment loads, etc. on fittings or tubing.

This will cause damage to fittings and will crush, burst or release tubing.

4. Mount so that tubing is not damaged due to tangling and abrasion.

This can cause flattening, bursting or disconnection of tubing, etc.

Piping

⚠ Caution

1. Preparation before piping

Before piping is connected, it should be thoroughly blown out with air (flushing) or washed to remove chips, cutting oil and other debris from inside the pipe. Not allowing chips of the piping thread or the seal material to go in.

Air Supply

Types of fluid

This product is designed for use with compressed air.

2. In case of excessive condensation

Excessive condensation in a compressed air system may cause pneumatic equipment to malfunction. Installation of an air dryer, water separator before filter is recommended.

3. Drain flushing

If condensation in the drain bowl is not emptied on a regular basis, the bowl will overflow and allow the condensation to enter the compressed air lines. It causes malfunction of pneumatic devices.

if the drain bowl is difficult to check and remove, installation of a drain bowl with an auto drain option is recommended. For compressed air quality, refer to SMC's "Air Cleaning Equipment" catalog.

Operating Environment

⚠ Warning

- Do not use in locations having an explosive atmosphere.
- 2. Do not operate in locations where vibration or impact occurs.
- In locations near heat sources, block off radiated heat.

Maintenance

⚠ Caution

- 1. Reform periodic inspections to check the following problems and replace tubing, if necessary.
 - 1) Cracks, gouges, wearing, corrosion
 - 2) Air leakage
 - 3) Twists or crushing of tubing
- 4) Hardening, deterioration, softening of tubing
- Do not repair or patch the replaced tubing or fittings for reuse.
- When using insert or miniature fittings over a long period, some leakage may occur due to age deterioration of the materials. If any leakage is detected, correct the problem by additional tightening.

If tightening becomes ineffective, replace the fittings with a new product immediately.

ng

KQ2

KQB2

км

VE

M H/DL

L/LL KC

KK

KK130

DM

KDM KB

KR KA

KOG2

KG KFG2

MS

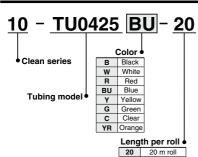
KKA

KP

LQ

MQR

_



Clean Series Tubing

Polyurethane Tubing: Series 10-TU

Refer to CAT. E02-23, "SMC Pneumatic Clean Series" for details

Model/Specifications

— 20 m roll

		Tubing size							
	Inch size (Series TIUB)		J)						
Model	10-TIUB01	10-TU0212	10-TU0425	10-TU0604	10-TU0805	10-TU1065	10-TU1208		
Tubing O.D. (mm)	3.2	2	4	6	8	10	12		
Tubing I.D. (mm)	2	1.2	2.5	4	5	6.5	8		
Black (B)	\lnot	_					-		
White (W)	—	→	→	—∳—	—	—	—		
Red (R)	─					—			
Blue (BU)	─	$- \longleftarrow$	→	—∳—	—	—	—		
Yellow (Y)	─	-			-	-			
Green (G)		-+-	-+-	-	-	-	-		
Clear (C)		→	→	—+	—+	→	—+		
Orange (YR)	-						- •		

											1
Fluid	Air/Water										
Max. operating pressure (at 20°C)	0.8 MPa										
Burst pressure	Refer to the burst pressure characteristics curve.										
Recommended fittings	Fittings for	r clean	series (10	-KJ, 10	-KQ,	10-KF, 1	0-KDM	10-K	G, 10	-M, 10	-MS)
Min. bending radius (mm) Note)	10	4	1 1	10	15	5	20	2	7	3	5
Operating temperature	Air: -20 to 60°C, Water: 0 to 40°C (No freezing)										
Material	Polyurethane										

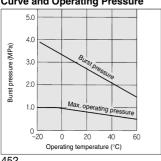
Note) The value of the minimum bending radius is measured at the temperature of 20°C as

Minimum bending radius measuring method

Bend the tube into U-form at a temperature of 20°C. Fix one end and close loop gradually. Measure 2R when the tube breaks or is crushed.

Polyurethane Coil Tubing: Series 10-TCU

Refer to CAT. E02-23, "SMC Pneumatic Clean Series" for details.


Specifications

Model	10-TCU 10-TCU 10-TCU 10-TCU 10-TCU 10-TCU 10-TCU 0425B-1 0425B-2 0425B-3 0604B-1 0604B-2 0604B-3					10-TCU 0805B-1			
No. of cores	1 core	2 cores	3 cores	1 core	2 cores	3 cores	1 core		
Tubing O.D. (mm)		4			6		8		
Tubing I.D. (mm)		2.5			4		5		
Fluid	Air								
Max. operating pressure (at 20°C)	0.8 MPa								
Burst pressure		Refer to t	he burst p	ressure cl	naracterist	ics curve.			
Recommended fittings	Fittings for	clean serie	s (10-KJ, 1	0-KQ, 10-K	F, 10-KDM,	10-KG, 10-	M, 10-MS)		
Operating temperature	-20 to 60°C								
Material	Polyurethane								
Color				Black					

Polyurethane Flat Tubing: Series 10-TFU

Refer to CAT. E02-23, "SMC Pneumatic Clean Series" for details

Burst Pressure Characteristics Curve and Operating Pressure

Specifications

Model	10-TFU 0425B-2	10-TFU 0425B-3	10-TFU 0604B-2	10-TFU 0604B-3	10-TFU 0805B-2	10-TFU 0805B-3	
No. of cores	2 cores	3 cores	2 cores	3 cores	2 cores	3 cores	
Tubing O.D. (mm)	4 6 8					3	
Tubing I.D. (mm)	2	2.5		4	5		
Fluid	Air						
Max .operating pressure (at 20°C)	0.8 MPa						
Burst pressure	Refer to the burst pressure characteristics curve.						
Recommended fittings	Fittings for clean series (10-KJ, 10-KQ, 10-KF, 10-KDM, 10-KG, 10-M, 10-MS)						
Operating temperature	-20 to 60°C						
Material	Polyurethane						
Color	Black						
Min. bending radius (mm)	10 15 2				0		
Tubing roll length (m)	10						

Note) The value of the minimum bending radius is measured at the temperature of 20°C as shown at the left

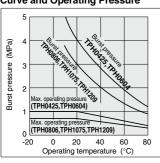
Clean Tubing: Polyolefin Tubing Series TPH

Model/Specifications

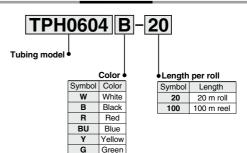
ullet — 20 m roll $\,\Box$ — 100 m reel

Model	TPH0425	TPH0604	TPH0806	TPH1075	TPH1209
O.D. (mm)	4	6	8	10	12
I.D. (mm)	2.5	4	6	7.5	9
White (W)		_	<u> </u>	—	-
Black (B)		_	<u> </u>	—	<u> </u>
Red (R)	<u> </u>	_	•	—	<u> </u>
Blue (BU)	<u> </u>	_	•	<u> </u>	<u> </u>
Yellow (Y)		_	_	_	
Green (G)		_		_	

Fluid	Air/Nitrogen gas/Water (Pure water) (1)									
Max. operating pressure (at 20°C)	1.0 MPa (2)			0.7 MPa ⁽²⁾						
Min. bending radius (mm)	1	15 25		3	5	4	5	5	5	
Burst pressure	Refer to the burst pressure characteristics curve.									
Applicable fittings	Clean one-touch fittings One-touch fittings, Metal: Series KQB2 One-touch fittings, Stainless steel 316: Series KQG2 Insert fittings								2	
Operating temperature	- 20 to 80°C, For water 5 to 80°C									
Material	Polyolefin resin									


Note 1) Please consult with SMC regarding other fluids.

Note 2) The maximum operating pressure is the value at 20°C. Refer to the burst pressure characteristics curve for other temperatures. Furthermore, an abnormal temperature rise due to adiabatic compression can cause tubing to burst.


Note 3) The minimum bending radius indicates the value at a temperature of 20°C with an outside diameter rate of change of 10% or less. At higher temperatures the outside diameter rate of change may exceed 10% within the minimum bending radius.

Note 4) Polyolefin resin is not suitable for regular pneumatic equipment piping because it is not resistant to mineral oil.

Burst Pressure Characteristics Curve and Operating Pressure

How to Order

KQ2

KQB2

KS KX

KM

M H/DL

KC

KK

KK130

DM KDM

KB

KR

KA

NΑ

KQG2

KG

KFG2

MS

KKA

KP

LQ

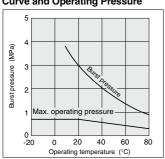
MQR

T

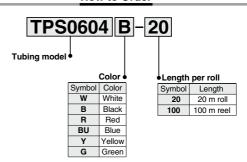
Clean Tubing: Soft Polyolefin Tubing Series TPS

Model/Specifications

● — 20 m roll □ — 100 m reel


Model	TPS0425	TPS0604	TPS0805	TPS1065	TPS1208
O.D. (mm)	4	6	8	10	12
I.D. (mm)	2.5	4	5	6.5	8
White (W)	—	_	_	_	
Black (B)	-	_	•	<u> </u>	
Red (R)	-	_	•	<u> </u>	
Blue (BU)	-	_	•	<u> </u>	<u> </u>
Yellow (Y)	<u> </u>	_	<u> </u>	<u> </u>	
Green (G)	-	_	•	<u> </u>	

Fluid	Air/Nitrogen gas/Water (Pure water) (1)								
Max. operating pressure (at 20°C)	0.7 MPa ⁽²⁾								
Min. bending radius (mm)	10 20 25 30 40								
Burst pressure	Refer to the burst pressure characteristics curve.								
Applicable fittings	Clean one-touch fittings One-touch fittings, Metal: Series KQB2 One-touch fittings, Stainless steel 316: Series KQG2 Insert fittings								
Operating temperature	- 20 to 80°C, For water 5 to 80°C								
Material	Polyolefin resin								


Note 1) Please consult with SMC regarding other fluids.

- Note 2) The maximum operating pressure is the value at 20°C. Refer to the burst pressure characteristics curve for other temperatures. Furthermore, an abnormal temperature rise due to adiabatic compression can cause tubing to burst.
- Note 3) The minimum bending radius indicates the value at a temperature of 20°C with an outside diameter rate of change of 10% or less. At higher temperatures the outside diameter rate of change may exceed 10% within the minimum bending radius.
- Note 4) Polyolefin resin is not suitable for regular pneumatic equipment piping because it is not resistant to mineral oil.

Burst Pressure Characteristics Curve and Operating Pressure

How to Order

