Accurately controls the temperature of liquid in the bath.

Temperature stability: \(\pm 0.01 ^\circ C \)

Temperature distribution: \(\pm 0.02 ^\circ C \) in the bath

- Environmentally friendly and refrigerant-free
- Heaterless
- Function to detect abnormal heating and temperature sensor errors comes standard.
- Light and compact
- Greatly reduced vibration and operating noise when compared with the refrigerated type.

Applications
- Chemicals for MOCVD
- Diffusion gas
- Various samples, materials and parts
- Chemicals and liquids with high viscosity

Controller

Facility water outlet

Facility water inlet

Circulating pump

Circulating fluid

Tap water, Fluorinated liquid

Fluorinert™ GALDEN®

Technical Data

HEB Series
A Peltier device (thermo-module, thermoelectric device) is a plate type element, inside which P-type semiconductors and N-type semiconductors are located alternately. If direct current is supplied to the Peltier device, heat is transferred inside the device, and one face generates heat and increases temperature while the other face sucked heat and decreases temperature. Therefore, changing the direction of the current supplied to the Peltier device can achieve heating and cooling operation. This method has a fast response and can shift quickly between heating and cooling, so temperature can be controlled very precisely.

Application Examples

- **Semiconductor**
 - Evaporation of chemicals for MOCVD
 - Temperature control of diffusion gas

- **Various tests**
 - Thermal test with immersion

- **Physical and chemical analysis**
 - Temperature control of various samples, materials and parts

- **Various chemical processes**
 - Indirect temperature control of chemicals and liquids with high viscosity

Features

- Exclusively developed dual tank construction to provide consistent temperature at any position in the bath

Principle of Peltier Device (Thermo-module, Thermoelectric device)

Cooling
- Recirculating fluid
- Electron flow
- Facility water
- Heat suction (cooling)
- DC power supply

Heating
- Recirculating fluid
- Electron flow
- Facility water
- Heat generation (heating)
- DC power supply
CONTENTS

HEB Series

Thermoelectric Bath HEB Series

How to Order .. Page 477
Specifications .. Page 478
Cooling Capacity ... Page 479
Heating Capacity .. Page 479
Pressure Loss in Facility Water Circuit Page 479
Parts Description .. Page 479
Dimensions ... Page 480
Connectors ... Page 481
Maintenance ... Page 481

Specific Product Precautions Page 482
How to Order

Combination (Controller + Liquid Tank)

HEB C 002 - W A 10 -

- **Shape of bath**: Round
- **Cooling capacity**: 140 W
- **Radiating method**: Water-cooled
- **Option**
 - Nil
 - Rc1/4
 - N
 - NPT1/4
 - The option should be specified when ordering.
- **Liquid tank size**: Ø130 x H180
- **Communication**
 - A: RS-485
 - B: RS-232C

Liquid Tank

HEB C 002 - H W 10 -

- **Shape of bath**: Round
- **Cooling capacity**: 140 W
- **Liquid tank**
- **Radiating method**: Water-cooled
- **Option**
 - Nil
 - Rc1/4
 - N
 - NPT1/4
 - The option should be specified when ordering.
- **Liquid tank size**: Ø130 x H180

Controller

HEBC002 - C A

- **Controller**
- **Communication**
 - A: RS-485
 - B: RS-232C
Specifications

For details, please refer to our “Product Specifications” information.

<table>
<thead>
<tr>
<th>Specifications</th>
<th>HEBC002-WA10</th>
<th>HEBC002-WB10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling method</td>
<td>Peltier device (Thermo-module, Thermoelectric device)</td>
<td>Peltier device (Thermo-module, Thermoelectric device)</td>
</tr>
<tr>
<td>Radiating method</td>
<td>Liquid tank: Water-cooled, Controller: Forcible air-cooled</td>
<td>Liquid tank: Water-cooled, Controller: Forcible air-cooled</td>
</tr>
<tr>
<td>Control method</td>
<td>Cooling/Heating automatic shift PID control</td>
<td>Cooling/Heating automatic shift PID control</td>
</tr>
<tr>
<td>Ambient temperature/humidity</td>
<td>10 to 35°C, 35 to 80%RH</td>
<td>10 to 35°C, 35 to 80%RH</td>
</tr>
<tr>
<td>Application fluid</td>
<td>Tap water, Fluorinated liquid (Fluorinert™ FC-3283, GALDEN® HT135, HT200), 30% ethylene glycol aqueous solution</td>
<td>Tap water, Fluorinated liquid (Fluorinert™ FC-3283, GALDEN® HT135, HT200), 30% ethylene glycol aqueous solution</td>
</tr>
<tr>
<td>Set temperature range</td>
<td>-15.0 to 60.0°C (5 to 60°C for water)</td>
<td>-15.0 to 60.0°C (5 to 60°C for water)</td>
</tr>
<tr>
<td>Cooling capacity</td>
<td>140 W (Water)</td>
<td>140 W (Water)</td>
</tr>
<tr>
<td>Heating capacity</td>
<td>300 W (Water)</td>
<td>300 W (Water)</td>
</tr>
<tr>
<td>Temperature stability</td>
<td>±0.01°C</td>
<td>±0.01°C</td>
</tr>
<tr>
<td>Temperature distribution</td>
<td>±0.02°C</td>
<td>±0.02°C</td>
</tr>
<tr>
<td>Tank dimensions</td>
<td>Internal diameter ø130 x Liquid level 188 mm</td>
<td>Internal diameter ø130 x Liquid level 188 mm</td>
</tr>
<tr>
<td>Temperature</td>
<td>10 to 35°C (no condensation)</td>
<td>10 to 35°C (no condensation)</td>
</tr>
<tr>
<td>Pressure range</td>
<td>Within 0.5 MPa</td>
<td>Within 0.5 MPa</td>
</tr>
<tr>
<td>Flow rate</td>
<td>3 to 5 L/min</td>
<td>3 to 5 L/min</td>
</tr>
<tr>
<td>Port size</td>
<td>IN/OUT: Rc1/4</td>
<td>IN/OUT: Rc1/4</td>
</tr>
<tr>
<td>Fluid contact material</td>
<td>Stainless steel 303, Stainless steel 304, FEP, A6063 (anodized)</td>
<td>Stainless steel 303, Stainless steel 304, FEP, A6063 (anodized)</td>
</tr>
<tr>
<td>Power supply</td>
<td>Single-phase 100 to 240 VAC, 50/60 Hz</td>
<td>Single-phase 100 to 240 VAC, 50/60 Hz</td>
</tr>
<tr>
<td>Overcurrent protector</td>
<td>10 A</td>
<td>10 A</td>
</tr>
<tr>
<td>Current consumption</td>
<td>4 A (100 VAC) to 2 A (240 VAC)</td>
<td>4 A (100 VAC) to 2 A (240 VAC)</td>
</tr>
<tr>
<td>Alarm (With alarm output connector)</td>
<td>1) Overheating of liquid tank (which activates the thermostat)</td>
<td>1) Overheating of liquid tank (which activates the thermostat)</td>
</tr>
<tr>
<td></td>
<td>2) Controller output voltage reduction</td>
<td>2) Controller output voltage reduction</td>
</tr>
<tr>
<td></td>
<td>3) Controller fan rotation stopped</td>
<td>3) Controller fan rotation stopped</td>
</tr>
<tr>
<td>Communications</td>
<td>RS-485</td>
<td>RS-232C</td>
</tr>
<tr>
<td>Weight</td>
<td>Liquid tank: Approx. 8.5 kg</td>
<td>Liquid tank: Approx. 8.5 kg</td>
</tr>
<tr>
<td></td>
<td>Controller: Approx. 6.5 kg</td>
<td>Controller: Approx. 6.5 kg</td>
</tr>
<tr>
<td>Accessories</td>
<td>Power cable (2 m), DC cable, Signal cable (3 m each)</td>
<td>Power cable (2 m), DC cable, Signal cable (3 m each)</td>
</tr>
<tr>
<td>Safety standards</td>
<td>CE marking, UL (NRTL) standard</td>
<td>CE marking, UL (NRTL) standard</td>
</tr>
</tbody>
</table>

1. GALDEN® is a registered trademark, belonging to the Solvay Group or its corresponding owner. Fluorinert™ is a trademark of 3M. For other fluids, please contact SMC.
2. Determined under the following conditions: water as the recirculating fluid, set temperature 25°C, facility water temperature 25°C, flow rate 3 L/min, ambient temperature 25°C, and sealed from outside air with a lid.
3. Differs depending on the operating conditions.
4. An appropriate range is from 3 to 5 L/min. To prevent damage to the radiating system, do not supply a flow over the maximum flow rate of 8 L/min.
5. When the temperature is set high, the liquid temperature inside of the liquid tank and the temperature inside of the thermostat could differ greatly depending on the heating mode at start-up, and the thermostat could then begin operating and stop the output. Confirm that there is no problem by carrying out an operating test beforehand.
Cooling Capacity

<table>
<thead>
<tr>
<th>Circulating fluid temperature [°C]</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time [minute]</td>
<td>0</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

- Ambient temperature: 25°C
- Liquid level: 180 mm (Liquid temperature: 25°C)
- Facility water temperature: 25°C
- Facility water flow rate: 3 L/min
- Shut out from outside with a lid (polystyrene foam)

Heating Capacity

<table>
<thead>
<tr>
<th>Circulating fluid temperature [°C]</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time [minute]</td>
<td>0</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

- Fluorinert™ FC-3283
- Ambient temperature: 25°C
- Liquid level: 180 mm (Liquid temperature: 25°C)
- Facility water temperature: 25°C
- Facility water flow rate: 3 L/min
- Shut out from outside with a lid (polystyrene foam)

Pressure Loss in Facility Water Circuit

- Ambient temperature: 25°C
- Liquid level: 180 mm (Liquid temperature: 25°C)
- Facility water temperature: 25°C
- Facility water flow rate: 3 L/min
- Shut out from outside with a lid (polystyrene foam)

The values shown on the performance chart are not guaranteed, but typical. Allow margins for safety when selecting the model.

Parts Description

- RUN LED
- TROUBLE LED
- Tank
- Signal connector
- Facility water outlet
- Facility water inlet
- Display/Operation panel
- Power switch
- Fan
- Communication connector
- Alarm output connector
- DC output connector
- Power connector
- DC connector
Dimensions

Liquid Tank

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>200</td>
</tr>
<tr>
<td>Height</td>
<td>332</td>
</tr>
<tr>
<td>Depth</td>
<td>138</td>
</tr>
</tbody>
</table>

Internal Dimensions of Liquid Tank

- **Temperature sensor**: ø147
- **Rubber foot**
- **Circulating pump**

Controller

- **RUN LED (Green)**
- **TROUBLE LED (Red)**
- **Model no. label**
- **Signal cable**
- **DC cable**
- **Fan**
- **Power switch**
- **Alarm output connector**
- **Communication connector**
- **Power connector**
- **DC output connector**

The opposite face has the same shape.

Technical Data

<table>
<thead>
<tr>
<th>Model</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRS-R</td>
<td>100/150HRS200</td>
</tr>
<tr>
<td>HRS090HRS</td>
<td>HRRHRLHRZDHRWHECRHECHED</td>
</tr>
</tbody>
</table>
Connectors

Water Bath and Controller Connection

- **Connector for water baths**
 - DC connector (male connector) — Signal connector (male connector)
 - Nanaboshi Electric Mfg. Co., Ltd.: NJC-245-RM UL CSA
 - HIROSE ELECTRIC CO., LTD.: CDA-15P
 - Holding screw M2.6

- **Power Cable Connection**
 - **Connector for controllers**
 - Power connector
 - IEC 60320 C-14 or equivalent
 - Male connector
 - HIROSE ELECTRIC CO., LTD.: CDE-9P
 - Connection cable
 - Nanaboshi Electric Mfg. Co., Ltd.: NJC-245-PF UL CSA
 - HIROSE ELECTRIC CO., LTD.: CDA-15S
 - Holding screw M2.6
 - Power cable
 - Nanaboshi Electric Mfg. Co., Ltd.: NJC-245-RF UL CSA
 - HIROSE ELECTRIC CO., LTD.: CDA-15S
 - Holding screw M2.6

Connector for External Equipment

- Connectors that fit with a communication connector and an alarm output connector should be prepared by user.

- **Alarm output connector**
 - HIROSE ELECTRIC CO., LTD.: CDE-9P
 - Holding screw M2.6
 - Fitting connector: CDE-9S or equivalent

- **Communication connector**
 - HIROSE ELECTRIC CO., LTD.: CDE-9S
 - Holding screw M2.6
 - Fitting connector: CDE-9P or equivalent

Maintenance

Maintenance of this unit is performed only in the form of return to and repair at SMC’s site. As a rule, SMC will not conduct on-site maintenance. Separately, the following parts have a limited life and need to be replaced before the life ends.

Parts Life Expectation

<table>
<thead>
<tr>
<th>Description</th>
<th>Expected life</th>
<th>Possible failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulating pump</td>
<td>3 to 5 years</td>
<td>The circulating fluid cannot be fed due to worn bearing and/or insufficient capacity of electrolytic capacitor, which results in temperature controlling failure.</td>
</tr>
<tr>
<td>Fan</td>
<td>5 to 10 years</td>
<td>The capacity of the fan lowers due to the end of lubricating performance of the bearing, which results in increase of internal temperature of the controller. The overhear protective function at the inside of the power supply starts, the output stops and the display goes off.</td>
</tr>
<tr>
<td>DC power supply</td>
<td>5 to 10 years</td>
<td>Abnormal voltage is generated and the display goes off due to insufficient capacity of electrolytic capacitor.</td>
</tr>
</tbody>
</table>
HEB Series
Specific Product Precautions 1

Be sure to read this before handling the products. Refer to page 513 for safety instructions and pages 514 to 517 for temperature control equipment precautions.

⚠️ Warning

1. The catalog shows the specifications of the Thermoelectric Bath.
 1. Check detailed specifications in the separate “Product Specifications”, and evaluate the compatibility of the Thermoelectric Bath with user’s system.
 2. The Thermoelectric Bath is equipped with a protective circuit independently, but the whole system should be designed by the user to ensure safety.

Handling

⚠️ Warning

1. Thoroughly read the operation manual.
 Read the operation manual completely before operation, and keep the manual where it can be referred to as necessary.

Operating Environment/Storage Environment

⚠️ Warning

1. Avoid using the Thermoelectric Bath in an environment where it could be splashed by fluids (including mist) such as water, salt water, oil, chemicals, or solvents.
2. The Thermoelectric Bath is not designed for clean room usage.
 It generates dust from the pump inside the tank and the cooling fan in the controller.
3. Low molecular siloxane can damage the contact of the relay.
 Use the Thermoelectric Bath in a place free from low molecular siloxane.
4. Reserve a space of 50 mm or more at the ventilation hole of the controller.

⚠️ Caution

1. The ventilation hole for radiation air must not be exposed to particles and dust as far as possible.
2. Do not let the inlet and outlet for radiation air get closed.
 If radiation is prevented, the internal power supply will overheat, causing the protective circuit to be activated and stopping the Thermoelectric Bath.
3. If more than one Thermoelectric Bath is used, consider their arrangement so that the downstream sides of the Thermoelectric Bath suck radiation air from the upstream sides.

Circulating Fluid

⚠️ Caution

4. The pump can be broken by foreign matter entering the circulating pump.
 Control to prevent any foreign matter from entering the fluid. If the fluid is fluorinated liquid and it is set to a temperature below freezing point, steam from the atmosphere will form ice (frost) when entering the fluid. Be sure to remove this ice (frost) regularly.
5. If water is used for the circulating fluid, set its temperature to 5°C or more to prevent it from being frozen.
6. If tap water is used, it should satisfy the quality standards shown below.

Tap Water (as a Circulating Fluid) Quality Standards
The Japan Refrigeration and Air Conditioning Industry Association JRA GL-02-1994 “Cooling water system – Circulation type – Make-up water"

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Standard value</th>
<th>Influence</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH (at 25°C)</td>
<td></td>
<td>6.0 to 8.0</td>
<td></td>
</tr>
<tr>
<td>Electric conductivity (25°C)</td>
<td>[µS/cm]</td>
<td>100 to 1000</td>
<td></td>
</tr>
<tr>
<td>Chloride ion (Cl⁻)</td>
<td>[mg/L]</td>
<td>50 or less</td>
<td></td>
</tr>
<tr>
<td>Sulfuric acid ion (SO₄²⁻)</td>
<td>[mg/L]</td>
<td>50 or less</td>
<td></td>
</tr>
<tr>
<td>Acid consumption (at pH 4.5)</td>
<td>[mg/L]</td>
<td>50 or less</td>
<td></td>
</tr>
<tr>
<td>Total hardness</td>
<td>[mg/L]</td>
<td>70 or less</td>
<td></td>
</tr>
<tr>
<td>Calcium hardness (CaCO₃)</td>
<td>[mg/L]</td>
<td>50 or less</td>
<td></td>
</tr>
<tr>
<td>Ionic state silica (SiO₂)</td>
<td>[mg/L]</td>
<td>30 or less</td>
<td></td>
</tr>
<tr>
<td>Iron (Fe)</td>
<td>[mg/L]</td>
<td>0.3 or less</td>
<td></td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>[mg/L]</td>
<td>0.1 or less</td>
<td></td>
</tr>
<tr>
<td>Sulfide ion (S²⁻)</td>
<td>[mg/L]</td>
<td>Should not be detected</td>
<td></td>
</tr>
<tr>
<td>Ammonium ion (NH₄⁺)</td>
<td>[mg/L]</td>
<td>0.1 or less</td>
<td></td>
</tr>
<tr>
<td>Residual chlorine (Cl₂)</td>
<td>[mg/L]</td>
<td>0.3 or less</td>
<td></td>
</tr>
<tr>
<td>Free carbon (CO₂)</td>
<td>[mg/L]</td>
<td>4.0 or less</td>
<td></td>
</tr>
</tbody>
</table>

*1 In the case of [µL cm⁻¹], it will be 0.003 to 0.01.
*2 Factors that have an effect on corrosion or scale generation.
*3 Even if the water quality standards are met, complete prevention of corrosion is not guaranteed.

Facility Water

⚠️ Caution

1. The maximum operating pressure of facility water is 0.5 MPa.
 If this value is exceeded, the internal piping of the tank can break, causing leakage of facility water.
2. Do not supply a flow rate of 8 L/min or more which can break the facility water piping.
3. Appropriate range of the flow rate of the facility water is 3 to 5 L/min.
 Flow rate higher than this range will not slightly affect the cooling and heating capacity. However, a flow rate below 3 L/min will reduce the cooling and heating capacity significantly.

Communication

⚠️ Caution

1. The set value can be written to EEPROM, but only up to approx. 100,000 times.
 In particular, pay attention to how many times the writing is performed using the communication function.
HEB Series
Specific Product Precautions 2
Be sure to read this before handling the products. Refer to page 513 for safety instructions and pages 514 to 517 for temperature control equipment precautions.

Maintenance

⚠️ Warning

1. Prevention of electric shocks and fire
 Do not operate the switch with wet hands. Also, do not operate the Thermoelectric Bath when water or fluid is present on its exterior surface.

2. Action in the case of error
 If any error such as an abnormal sound, smoke, or bad odor occurs, cut off the power at once, and stop supplying facility water. Please contact SMC or a sales distributor to repair the Thermoelectric Bath.

3. Regular inspection
 Check the following items at least once a month. The inspection must be done by an operator who has sufficient knowledge and experience.
 a) Check the displayed contents.
 b) Check the temperature, vibration level, and for abnormal sounds in the body of the Thermoelectric Bath.
 c) Check the voltage and current of the power supply system.
 d) Check the recirculating fluid for leakage, contamination, and the presence of foreign matter.
 e) Check the flow condition and temperature of the radiated air.
 f) Check for leakage, quality change, flow rate and temperature of facility water.