Refrigerant-free and energy saving type using no compressor. Ideal for ordinary temperature and high temperature processes.

- Type of circulating fluid: Fluorinated fluids/Ethylene glycol aqueous solution/Tap water, Deionized water
- Temperature range setting: 20 to 90°C
- Cooling capacity: 2 kW/8 kW/15 kW/30 kW
- Temperature stability: ±0.3°C

More effective energy-saving through use of an inverter pump
Energy Saving and Refrigerant-free

(Ordinary temperature up to 90°C)

The water-cooled thermo-chiller which does not use a compressor (refrigerant-free) is suitable for processes operating from ordinary temperature to 90°C. The energy-savings shown below can be achieved in comparison with existing models (depending on the conditions).

- **Power consumption:** Max. **59%** reduction (SMC comparison)
 - The power consumption can be reduced by direct heat exchange between the circulating fluid and facility water with no refrigerating circuit.

 - **Existing model**
 - HRW008-H: 1.9 kWh/h
 - Operating conditions: 60°C, 0 kW with 50% load, 8 kW with 50% load
 - Reduced running cost
 - Contribution to the environmental preservation

- **Circulating fluid:** Max. **13%** reduction (SMC comparison)
 - Enhanced temperature control technology and the unique pump/tank construction achieved the reduced circulating fluid required for operation.

 - **Existing model**
 - HRW008-H: 13 L
 - Comparison of the required circulating fluid inside a Thermo-chiller
 - Reduced initial cost
 - Contribution to the environmental preservation

Pump Inverter Type

More effective energy-saving is achieved through use of an *inverter pump*.

- **Power consumption:** Max. **89%** reduction (SMC comparison)
 - Operating conditions: 60°C, 0 kW with 50% load, 8 kW with 50% load

 - **Existing model**
 - HRW008-HS: 0.5 kWh/h
 - Reduced facilities investment
 - Space saved facility water equipment
 - Reduced running cost

Facility water: Max. **89%** reduction (SMC comparison)

The HRW series can achieve reduction in power consumption as it does not have a compressor, and reduction in the amount of facility water used because heat is exchanged directly with the circulating fluid.

- **Existing model**
 - HRW008-H: 1.2 L/min
 - Operating conditions: 60°C, 0 kW with 50% load, 8 kW with 50% load, Bypass valve fully closed

- **HRW008-HS**
 - Operating conditions: 60°C, 0 kW with 50% load, 8 kW with 50% load, Bypass valve fully closed

Space Saving

- **Installation area:** Max. **45%** reduction (SMC comparison)
 - *(Forced exhaust from rear side)*
 - By emitting the heat from the back, ventilation slits on the side are unnecessary offering reduced installation space.

 - Thermo-chiller with exhaust from the side:
 - Body space: W400 mm x D845 mm
 - Ventilation space: 100 mm
 - HRW008-H: Body space: W380 mm x D665 mm
 - Ventilation space: 0

 - **Existing model**
 - HRW: 0.93 m²

 - **HRW008-H**
 - 0.51 m²

 - **HRW008-HS**
 - 0.93 m²
1. Normal operation

Option
Circulating pump
Internal pump
Heater
Main tank
User's equipment

Temperature difference \(\Delta t \) [°C]

<table>
<thead>
<tr>
<th>Time (2 min.)</th>
<th>HRW015-H1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 kW load</td>
<td>81.0°C</td>
</tr>
<tr>
<td>8 kW load</td>
<td>80.0°C</td>
</tr>
</tbody>
</table>

Cooling capacity: Max. 30 kW

Up to 30 kW cooling capacity achieved.

<table>
<thead>
<tr>
<th>Cooling capacity [kW]</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>70</td>
<td>80</td>
</tr>
</tbody>
</table>

Temperature stability: \(\pm 0.3°C \)

Enhanced temperature control technology achieved \(\pm 0.3°C \) temperature stabilities when a load is stable.

Cooling capacity: Max. 30 kW

Up to 30 kW cooling capacity achieved.

<table>
<thead>
<tr>
<th>Cooling capacity [kW]</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>70</td>
<td>80</td>
</tr>
</tbody>
</table>

Temperature difference \(\Delta t \) [°C]

2. Circulating fluid automatic recovery function

Circulating fluid inside a thermo-chiller tank can be recovered automatically. (Recovery volume: 12 L)

- Reduced maintenance time
- Faster operation
- Reduced circulating liquid loss by evaporation or spill

Option
N2 purge port
Internal pump
Circulating pump
Non-return valve
Heater
Facility water inlet
Facility water outlet
Circulating fluid outlet
Circulating fluid return port
User's equipment

3. Fluid returns to the main tank from the circulating fluid recovery tank.

Option
N2 purge port
Internal pump
Circulating pump
Non-return valve
Heater
Facility water inlet
Facility water outlet
Circulating fluid outlet
Circulating fluid return port
User's equipment

Easy maintenance

- Checking the electrical component parts accessible from the front side only
- Possible to replace the maintenance parts (such as a pump) without removing the pipings and discharging the circulating fluid.
- Various alarm displays (Refer to page 276.)

Circulating fluid electric resistivity control function

(Refer to “Options” on page 277.)
(DI control kit)
Electric Resistivity Control

DI control kit
(Refer to “Options” on page 277.)
Electric resistivity of circulating fluid (ethylene glycol aqueous solution and deionized water) can be controlled.

Communications
- Contact input/output signal
- Serial RS-485 communication
- Analog communication (Refer to “Options” on page 277.)
- DeviceNet communication (Refer to “Options” on page 277.)

DeviceNet™
Trademark
DeviceNet™ is a trademark of ODVA.

Fluid contact parts adopt the materials compatible for various circulating fluids.
(Stainless steel, EPDM, etc.)
- Fluorinated fluids: Flourinert™ FC-40
 GALEN® HT200
- 60% ethylene glycol aqueous solution
- Deionized water/Tap water
Regarding the fluid other than the above, please contact SMC.
Flourinert™ is a trademark of 3M. GALEN® is a registered trademark of Solvay Solexis, Inc.

Construction and Principles

Circulating fluid circuit
With the circulating pump, circulating fluid will be discharged to the user’s equipment side. After the circulating fluid will heat or cool the user’s equipment side, it will be returned to the main tank via the heat exchanger.
When the automatic circulating fluid recovery function, which recovers the circulating fluid from the user’s equipment, is selected (refer to page 258), a sub-tank for recovery is installed. The internal pump is used to transfer a circulating fluid from the sub-tank to the main tank.

Facility water circuit
When the circulating fluid temperature rises higher than the set temperature, open the solenoid valve to introduce facility water to the heat exchanger.
When the circulating fluid temperature falls back below the set temperature, close the solenoid valve to shut off facility water to the heat exchanger.
Application Examples

Semiconductor
Example: Temperature control of chamber electrode

- Etching equipment
- Spatter equipment
- Cleaning equipment
- Coating equipment
- Dicing equipment
- Tester, etc.

Medical
Example: Blood preservation

- X-ray instrument
- MRI
- Blood preservation equipment

Food
Example: Tofu (Bean curd) production

- Bottle-cleaning machine
- Tofu (Bean curd) production equipment
- Noodle-making machine, etc.

Medical
Example: Blood preservation

- X-ray instrument
- MRI
- Blood preservation equipment

Machine tool
Example: Laser machining

- Wire cutting
- Grinder
- Spot welding
- Plasma welding
- Laser machining, etc.

Printing
Example: Printing temperature control

- Offset printing machine
- Automatic developing machine
- UV equipment, etc.

Analysis
Example: Electronic microscope

- Electron microscope
- X-ray analytical instrument
- Gas chromatography
- Sugar level analytical instrument, etc.

Food
Example: Tofu (Bean curd) production

- Bottle-cleaning machine
- Tofu (Bean curd) production equipment
- Noodle-making machine, etc.

Molding
Example: Injection molding

- Plastic molding
- Rubber molding
- Wire cable coating machine
- Injection molding, etc.

Temperature-controlling the mold results in improved product quality.

Printing
Example: Printing temperature control

- Offset printing machine
- Automatic developing machine
- UV equipment, etc.

Temperature-controlling the ink roller enables to control the evaporation amount and viscosity of an ink and optimise the tint of colors.

Medical
Example: Blood preservation

- X-ray instrument
- MRI
- Blood preservation equipment

Temperature-controlling the laser generating tube enables the laser wave length to be optimised, improving the accuracy of the machined cross-sectional area.

Food
Example: Tofu (Bean curd) production

- Bottle-cleaning machine
- Tofu (Bean curd) production equipment
- Noodle-making machine, etc.

Molding
Example: Injection molding

- Plastic molding
- Rubber molding
- Wire cable coating machine
- Injection molding, etc.

Temperature-controlling the mold results in improved product quality.

Analysis
Example: Electronic microscope

- Electron microscope
- X-ray analytical instrument
- Gas chromatography
- Sugar level analytical instrument, etc.

Prevents the distortion caused by the heat generated by the electronic gun in an electronic microscope.

Printing
Example: Printing temperature control

- Offset printing machine
- Automatic developing machine
- UV equipment, etc.

Temperature-controlling the ink roller enables to control the evaporation amount and viscosity of an ink and optimise the tint of colors.
CONTENTS
HRW Series

Water-cooled Thermo-chiller HRW Series

● Model Selection
 Guide to Model Selection .. Page 263
 Required Cooling Capacity Calculation Page 264
 Precautions on Model Selection .. Page 265
 Circulating Fluid Typical Physical Property Values Page 266

● Fluorinated Fluid Type
 How to Order/Specifications .. Page 267
 Cooling Capacity/Heating Capacity/Pump Capacity Page 268

● Ethylene Glycol Type
 How to Order/Specifications .. Page 269
 Cooling Capacity/Heating Capacity/Pump Capacity Page 270

● Tap/Deionized Water Type
 How to Order/Specifications .. Page 271
 Cooling Capacity/Heating Capacity/Pump Capacity Page 272

● Common Specifications
 Dimensions .. Page 273
 Communication Functions .. Page 274
 · Contact Input/Output ... Page 274
 · Serial RS-485 .. Page 275
 · Connector Location ... Page 275
 Operation Display Panel .. Page 276
 Alarm ... Page 276

● Options
 Analog Communication .. Page 277
 DeviceNet Communication ... Page 277
 NPT Fitting .. Page 278
 DI Control Kit ... Page 278
 Circulating Fluid Automatic Recovery Page 278

● Optional Accessories
 1. Bypass Piping Set ... Page 279
 2. Anti-quake Bracket ... Page 279
 3. 4-Port Manifold ... Page 280
 4. DI Filter ... Page 280
 5. Insulating Material for DI Filter Page 281
 6. Contaminant Filter .. Page 281
 7. 60% Ethylene Glycol Aqueous Solution Page 281
 8. Concentration Meter ... Page 281

Specific Product Precautions .. Page 282
1. How much is the temperature in degrees centigrade for the circulating fluid?

Temperature range which can be set with the thermo-chiller
H: 20°C to 90°C
Example) User requirement: 50°C

2. What kind of the circulating fluids will be used?

Relationship between circulating fluid (which can be used with the thermo-chiller) and temperature
- Fluorinated fluids: Fluorinert™ FC-40/GALDEN® HT200
- 60% ethylene glycol aqueous solution
- Tap water/Deionized water

Example) User requirement: Tap water

3. How much is the temperature in degrees centigrade for the facility water?

Temperature range which can be set with the thermo-chiller
10°C to 35°C
Example) Facility water temperature of user’s equipment: 15°C
Temperature difference between the circulating fluid and facility water is: 50 − 15 = 35°C.

4. What is the kW for the required cooling capacity?

Example) User requirement: 20 kW
Plot the point where the temperature difference between the circulating fluid and facility water (35°C) intersects the cooling capacity (20 kW) in the cooling capacity graph.

The point plotted in the graph is the requirement from the user. Select the thermo-chiller models exceeding this point. In this case, select the HRW030-H2.
Required Cooling Capacity Calculation

Example 1: When the heat generation amount in the user’s equipment is known.

Heat generation amount Q: 3.5 kW

Cooling capacity = Considering a safety factor of 20%, $3.5 \times 1.2 = 4.2 \text{ kW}$

Example 2: When the heat generation amount in the user’s equipment is not known.

<table>
<thead>
<tr>
<th>Heat generation amount Q</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulating fluid temperature difference ΔT ($= T_2 - T_1$)</td>
<td>6.0°C (6.0 K)</td>
</tr>
<tr>
<td>Circulating fluid outlet temperature T_1</td>
<td>20°C (293.15 K)</td>
</tr>
<tr>
<td>Circulating fluid return temperature T_2</td>
<td>26°C (299.15 K)</td>
</tr>
<tr>
<td>Circulating fluid flow rate L</td>
<td>20 L/min</td>
</tr>
<tr>
<td>Circulating fluid</td>
<td>Fluorinated fluid</td>
</tr>
<tr>
<td>Density γ</td>
<td>1.80×10^3 kg/m3</td>
</tr>
<tr>
<td>Specific heat C</td>
<td>0.96×10^3 J/(kg·K)</td>
</tr>
<tr>
<td></td>
<td>(at 20°C)</td>
</tr>
</tbody>
</table>

Obtain the temperature difference between inlet and outlet by circulating the circulating fluid inside the user’s equipment.

\[
Q = \frac{\Delta T \times L \times \gamma \times C}{60 \times 1000} = \frac{6.0 \times 20 \times 1.80 \times 10^3 \times 0.96 \times 10^3}{60 \times 1000} = 3.5 \text{ kW}
\]

Cooling capacity = Considering a safety factor of 20%, $3.5 \times 1.2 = 4.2 \text{ kW}$

*Refer to page 266 for the typical physical property values by circulating fluid.

\[
Q = \frac{\Delta T \times L \times \gamma \times C}{860} = \frac{6.0 \times 1.2 \times 1.80 \times 10^3 \times 0.23}{860} = 3.5 \text{ kW}
\]

Cooling capacity = Considering a safety factor of 20%, $3.5 \times 1.2 = 4.2 \text{ kW}$

Example of conventional units (Reference)

- Unknown
- 6.0°C
- 20°C
- 26°C
- 1.2 m3/h
- Fluorinated fluid
- Density γ: 1.80×10^3 kg/m3
- Specific heat C: 0.23 kcal/kg·°C
 (at 20°C)

* Refer to page 266 for the typical physical property values by circulating fluid.

Thermo-chiller

- T_2: Return temperature
- T_1: Outlet temperature
- $\Delta T = T_2 - T_1$
Required Cooling Capacity Calculation

Example 3. When there is no heat generation, and when cooling the object below a certain temperature and period of time.

Cooled substance total volume \(V \) : 60 L
Cooling time \(h \) : 15 min
Cooling temperature difference \(\Delta T \) : 20°C (20 K) (70°C – 50°C \(\rightarrow \) 20°C)
Facility water temperature \(T \) : 20°C (293.15 K)
Circulating fluid : Fluorinated fluid
 - Density \(\gamma \) : 1.74 x 10^3 kg/m^3
 - Specific heat \(C \) : 1.05 x 10^3 J/(kg·K)
 (at 50°C)

\[Q = \frac{\Delta T \times V \times \gamma \times C}{h \times 60 \times 1000} \]
\[= \frac{20 \times 60 \times 1.74 \times 10^3 \times 1.05 \times 10^3}{15 \times 60 \times 1000} \]
\[= 2436 \text{ W} = 2.4 \text{ kW} \]

Cooling capacity = Considering a safety factor of 20%,
2.4 x 1.2 = 2.9 kW (When the circulating fluid temperature is 50°C.)

(In this case, selected thermo-chiller model will be the HRW008-H.)

Example of conventional units (Reference)

\[Q = \frac{\Delta T \times V \times C}{h \times 860} \]
\[= \frac{20 \times 0.06 \times 1.74 \times 10^3 \times 0.25}{0.25 \times 860} \]
\[= 2.4 \text{ kW} \]

Cooling capacity = Considering a safety factor of 20%,
2.4 x 1.2 = 2.9 kW (When the circulating fluid temperature is 50°C.)

(In this case, selected thermo-chiller model will be the HRW008-H.)

Precautions on Model Selection

1. Temperature difference between the circulating fluid and facility water
 The HRW series exchanges heat between the circulating fluid and facility water directly, so it may not be possible to lower the circulating fluid temperature to the set temperature if the facility water temperature is too high. Check that the facility water temperature can be maintained for the circulating fluid temperature referring to the cooling capacity graph of each model before using.

2. Heating capacity
 When setting the circulating fluid temperature at a higher temperature than the room temperature, the circulating fluid temperature will be heated with the thermo-chiller. Heating capacity varies depending on the circulating fluid temperature. Also, the heating capacity varies depending on the circulating fluid temperature. Consider the heat radiation amount or thermal capacity of the user’s equipment. Check beforehand if the required heating capacity is provided, based on the heating capacity graph for the respective model.

3. Pump capacity
 <Circulating fluid flow rate>
 Pump capacity varies depending on the model selected from the HRW series. Also, circulating fluid flow varies depending on the circulating fluid discharge pressure. Consider the installation height difference between our thermo-chiller and a user’s equipment, and the piping resistance such as circulating fluid pipings, or piping size, or piping curves in the machine. Check beforehand if the required flow rate is achieved, using the pump capacity curves for each respective model.

 <Circulating fluid discharge pressure>
 Circulating fluid discharge pressure has the possibility to increase up to the maximum pressure in the pump capacity curves for the respective model. Check beforehand if the circulating fluid pipings or circulating fluid circuit of the user’s equipment are fully durable against this pressure.
Fluorinated Fluids

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Density γ [kg/m³] [g/L]</th>
<th>Specific heat C [J/(kg·K)]</th>
<th>([kcal/kg·°C])</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10°C</td>
<td>1.87 x 10³</td>
<td>0.87 x 10³</td>
<td>0.21</td>
</tr>
<tr>
<td>20°C</td>
<td>1.80 x 10³</td>
<td>0.96 x 10³</td>
<td>0.23</td>
</tr>
<tr>
<td>50°C</td>
<td>1.74 x 10³</td>
<td>1.05 x 10³</td>
<td>0.25</td>
</tr>
<tr>
<td>80°C</td>
<td>1.67 x 10³</td>
<td>1.14 x 10³</td>
<td>0.27</td>
</tr>
</tbody>
</table>

60% Ethylene Glycol Aqueous Solution

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Density γ [kg/m³] [g/L]</th>
<th>Specific heat C [J/(kg·K)]</th>
<th>([kcal/kg·°C])</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10°C</td>
<td>1.10 x 10³</td>
<td>3.02 x 10³</td>
<td>0.72</td>
</tr>
<tr>
<td>20°C</td>
<td>1.08 x 10³</td>
<td>3.15 x 10³</td>
<td>0.75</td>
</tr>
<tr>
<td>50°C</td>
<td>1.06 x 10³</td>
<td>3.27 x 10³</td>
<td>0.78</td>
</tr>
<tr>
<td>80°C</td>
<td>1.04 x 10³</td>
<td>3.40 x 10³</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Water

- Density γ: 1 x 10³ [kg/m³] [g/L]
- Specific heat C: 4.2 x 10³ [J/(kg·K)] (1.0 [kcal/kg·°C])
Specifications

For details, please refer to our “Product Specifications” information.

How to Order

Fluorinated Fluid Type

<table>
<thead>
<tr>
<th>Model</th>
<th>HRW002-H</th>
<th>HRW008-H</th>
<th>HRW015-H</th>
<th>HRW030-H</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRW Series</td>
<td>Fluorinated Fluid Type</td>
<td>Fluorinert™ FC-40/GALDEN® HT200</td>
<td>Facility water temperature +15°C</td>
<td></td>
</tr>
<tr>
<td>Cooling capacity</td>
<td>2 kW</td>
<td>8 kW</td>
<td>15 kW</td>
<td>30 kW</td>
</tr>
<tr>
<td>Temperature range setting</td>
<td>20 to 90°C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Option

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil</td>
<td>None</td>
</tr>
<tr>
<td>C</td>
<td>Analog communication</td>
</tr>
<tr>
<td>D</td>
<td>DeviceNet communication</td>
</tr>
<tr>
<td>N</td>
<td>NPT fitting</td>
</tr>
<tr>
<td>W</td>
<td>SI unit only</td>
</tr>
<tr>
<td>Z</td>
<td>Circulating fluid automatic recovery</td>
</tr>
</tbody>
</table>

Pump inverter control

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Pump inverter control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil</td>
<td>None</td>
</tr>
<tr>
<td>S</td>
<td>Applicable (Pump inverter type)</td>
</tr>
</tbody>
</table>

Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>HRW002-H</th>
<th>HRW008-H</th>
<th>HRW015-H</th>
<th>HRW030-H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling method</td>
<td>Water-cooled</td>
<td>Temperature: 10 to 35°C, Humidity: 30 to 70%RH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature/humidity</td>
<td>20 to 90°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circulating fluid</td>
<td>Fluorinert™ FC-40/GALDEN® HT200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>10 to 35°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facility water temperature</td>
<td>30 to 70%RH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling capacity (50/60 Hz common)</td>
<td>kW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature stability</td>
<td>±0.3°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circulating fluid flow range</td>
<td>L/min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tank capacity</td>
<td>Approx. 13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circulating fluid recovery tank volume</td>
<td>Approx. 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port size</td>
<td>Rc3/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid contact material</td>
<td>Copper brazing (Heat exchanger), Stainless steel, EPDM, Silicone, PPS, Fluororesin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature range</td>
<td>10 to 35°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required flow rate</td>
<td>L/min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlet pressure range</td>
<td>MPa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port size</td>
<td>Rc3/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid contact material</td>
<td>Copper brazing (Heat exchanger), Stainless steel, EPDM, Silicone, Bronze, Brass, NBR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>3-phase 200/200 to 208 VAC ±10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. operating current</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breaker capacity</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td>Serial RS-485 (D-sub 9 pin) and Contact input/output (D-sub 25 pin)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>kg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Safety standards

- UL, CE marking, SEMI (S2-0703, S8-1103, F47-0200), SEMATECH (S2-93, S8-95)
Cooling Capacity

|-----------------------------|--------------------------------|

<table>
<thead>
<tr>
<th>Temperature difference Δt [$^\circ$C] (Circulating fluid temperature – Facility water temperature)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>35</td>
</tr>
</tbody>
</table>

Heating Capacity

|-----------------------------|--------------------------------|

<table>
<thead>
<tr>
<th>Circulating fluid temperature [$^\circ$C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

> *When pump inverter is operating at frequency of 60 Hz (maximum).*

Pump Capacity

HRW002-H

- Circulating fluid: Fluorinated fluids
- Circulating fluid temperature: 20°C

<table>
<thead>
<tr>
<th>Flow rate [L/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Circulating fluid pressure [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.1</td>
</tr>
</tbody>
</table>

* If the circulating fluid flow drops below 2 L/min., the shutdown alarm activates and operation stops. Do not use the product when the flow exceeds 16 L/min., since the flow cannot be displayed accurately.

* Pump capacity at 60 Hz indicates the maximum capacity of the HRW002-HS (pump inverter type).

HRW008-H/015-H/030-H

- Circulating fluid: Fluorinated fluids
- Circulating fluid temperature: 20°C

<table>
<thead>
<tr>
<th>Flow rate [L/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Circulating fluid pressure [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

* If the circulating fluid flow drops below 8 L/min., the shutdown alarm activates and operation stops. Do not use the product when the flow exceeds 50 L/min., since the flow cannot be displayed accurately.

* Pump capacity at 60 Hz indicates the maximum capacity of the HRW008-HS/015-HS/030-HS (pump inverter type).
Thermo-chiller
Ethylene Glycol Type
HRW Series

How to Order

Ethylene Glycol Type

HRW 002 - H 1

Cooling capacity

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Cooling capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td>2 kW</td>
</tr>
<tr>
<td>008</td>
<td>8 kW</td>
</tr>
<tr>
<td>015</td>
<td>15 kW</td>
</tr>
<tr>
<td>030</td>
<td>30 kW</td>
</tr>
</tbody>
</table>

Temperature range setting

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Temperature range setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>20 to 90°C</td>
</tr>
</tbody>
</table>

Ethylene glycol type

Pump inverter control

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Pump inverter control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil</td>
<td>None</td>
</tr>
<tr>
<td>S</td>
<td>Applicable (Pump inverter type)</td>
</tr>
</tbody>
</table>

Specifications (For details, please refer to our “Product Specifications” information.)

<table>
<thead>
<tr>
<th>Model</th>
<th>HRW002-H1</th>
<th>HRW002-H1S</th>
<th>HRW008-H1</th>
<th>HRW008-H1S</th>
<th>HRW015-H1</th>
<th>HRW015-H1S</th>
<th>HRW030-H1</th>
<th>HRW030-H1S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling method</td>
<td>Water-cooled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature/humidity(^1)</td>
<td>Temperature: 10 to 35°C, Humidity: 30 to 70%RH</td>
<td>60% ethylene glycol aqueous solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circulating fluid temperature(^2)</td>
<td>20 to 90°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facility water temperature</td>
<td>10 to 35°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circulating fluid rated flow L/min</td>
<td>4</td>
<td>15</td>
<td>30</td>
<td>40</td>
<td>10</td>
<td>15</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>Facility water required flow rate L/min</td>
<td>20 to 90°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature stability(^3)</td>
<td>±0.3°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump capacity (50/60 Hz) MPa</td>
<td>0.35/0.55 (at 4 L/min)</td>
<td>0.45/0.65 (at 15 L/min)</td>
<td>0.40/0.60 (at 30 L/min)</td>
<td>0.35/0.55 (at 40 L/min)</td>
</tr>
<tr>
<td>Circulating fluid flow rate(^5) L/min</td>
<td>3 to 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tank capacity(^6) L</td>
<td>Approx. 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circulating fluid recovery tank volume(^7) L</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port size</td>
<td>Rc3/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid contact material</td>
<td>Nickel brazing (Heat exchanger), Stainless steel, EPDM, Silicone, PPS, Fluoresein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature range °C</td>
<td>10 to 35°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required flow rate L/min</td>
<td>10</td>
<td>15</td>
<td>25</td>
<td>40</td>
<td>10</td>
<td>15</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>Inlet pressure range MPa</td>
<td>0.3 to 0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port size</td>
<td>Rc3/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid contact material</td>
<td>Nickel brazing (Heat exchanger), Stainless steel, EPDM, Silicone, Bronze, Brass, NBR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>3-phase 200/200 to 208 VAC ±10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. operating current A</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breaker capacity A</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td>Serial RS-485 (D-sub 9 pin) and Contact input/output (D-sub 25 pin)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions(^8) mm</td>
<td>W380 x D665 x H860</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight(^9) kg</td>
<td>Approx. 90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) It should have no condensation.
\(^2\) Dilute pure ethylene glycol with tap water. Additives invading fluid contact material such as preservatives cannot be used.
\(^3\) Outlet temperature when the circulating fluid and facility water are rated flow, and the circulating fluid outlet and return port are directly connected. Installation environment, power supply, and facility water are within specification range and stable. Value obtained 10 minutes after the external load is stabilized (after stabilization with no load for HRW030-H1). It may be out of this range when a DI control kit (option Y) is used or in some other operating conditions.
\(^4\) The capacity at the circulating fluid outlet when the circulating fluid temperature is 20°C. Pump capacity at 60 Hz indicates the maximum capacity of the HRW-002-H1S (pump inverter type).
\(^5\) Applicable to the HRW-002-H1S (pump inverter type) only.
\(^6\) Minimum volume required for operating only the thermo-chiller. (Circulating fluid temperature: 20°C, including the thermo-chiller’s internal pipings or heat exchanger)
\(^7\) The automatic circulating fluid recovering function will be provided by selecting option Z for collecting the circulating fluid inside an external piping.
\(^8\) It should have no condensation.
\(^9\) Required flow rate for cooling capacity or maintaining the temperature stability.
Cooling Capacity

<table>
<thead>
<tr>
<th>HRW002-H1/008-H1/015-H1/030-H1</th>
<th>HRW002-H1S/008-H1S/015-H1S/030-H1S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulating fluid pressure [MPa]</td>
<td>Heating capacity [kW]</td>
</tr>
<tr>
<td>Outlet pressure [60 Hz]</td>
<td>HRW030-H1</td>
</tr>
<tr>
<td>Outlet pressure [50 Hz]</td>
<td>HRW015-H1</td>
</tr>
<tr>
<td>Return port pressure</td>
<td>HRW008-H1</td>
</tr>
<tr>
<td>HRW002-H1</td>
<td></td>
</tr>
</tbody>
</table>

Temperature difference $\Delta t [\degree C]$ (Circulating fluid temperature – Facility water temperature)

Heating Capacity

<table>
<thead>
<tr>
<th>HRW002-H1/008-H1/015-H1/030-H1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulating fluid pressure [MPa]</td>
</tr>
<tr>
<td>Outlet pressure [60 Hz]</td>
</tr>
<tr>
<td>Outlet pressure [50 Hz]</td>
</tr>
<tr>
<td>Return port pressure</td>
</tr>
</tbody>
</table>

Flow rate [L/min]

Pump Capacity:

- **HRW002-H1**: Circulating fluid: 60% ethylene glycol, Circulating fluid temperature: 20°C
- **HRW002-H1S**: Circulating fluid: 60% ethylene glycol, Circulating fluid temperature: 20°C

Outlet pressure [50 Hz]

If the circulating fluid flow drops below 2 L/min., the shutdown alarm activates and operation stops. Do not use the product when the flow exceeds 16 L/min., since the flow cannot be displayed accurately.

Pump capacity at 60 Hz indicates the maximum capacity of the HRW002-H1S (pump inverter type).

Outlet pressure [60 Hz]

If the circulating fluid flow drops below 8 L/min., the shutdown alarm activates and operation stops. Do not use the product when the flow exceeds 50 L/min., since the flow cannot be displayed accurately.

Pump capacity at 60 Hz indicates the maximum capacity of the HRW008-H1S/015-H1S/030-H1S (pump inverter type).
Thermo-chiller Tap/Deionized Water Type

HRW Series

How to Order

Tap/Deionized Water Type HRW 002 - H 2

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td></td>
</tr>
<tr>
<td>008</td>
<td></td>
</tr>
<tr>
<td>015</td>
<td></td>
</tr>
<tr>
<td>030</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>

Temperature range setting

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Temperature range setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>20 to 90°C</td>
</tr>
</tbody>
</table>

Pump inverter control

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Pump inverter control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil</td>
<td>None</td>
</tr>
<tr>
<td>S</td>
<td>Applicable (Pump inverter type)</td>
</tr>
</tbody>
</table>

Specifications

(For details, please refer to our “Product Specifications” information.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling method</td>
<td>Water-cooled</td>
<td>Tap water, Deionized water</td>
</tr>
<tr>
<td>Conditions</td>
<td>20 to 90°C</td>
</tr>
<tr>
<td>Circulating fluid flow range</td>
<td>3 to 16 L/min</td>
</tr>
<tr>
<td>Fluid contact material</td>
<td>Nickel brazing (Heat exchanger), Stainless steel, EPDM, Silicone, PPS, Fluororesin</td>
<td>Nickel brazing (Heat exchanger), Stainless steel, EPDM, Silicone, PPS, Fluororesin</td>
<td>Nickel brazing (Heat exchanger), Stainless steel, EPDM, Silicone, PPS, Fluororesin</td>
<td>Nickel brazing (Heat exchanger), Stainless steel, EPDM, Silicone, PPS, Fluororesin</td>
<td>Nickel brazing (Heat exchanger), Stainless steel, EPDM, Silicone, PPS, Fluororesin</td>
<td>Nickel brazing (Heat exchanger), Stainless steel, EPDM, Silicone, PPS, Fluororesin</td>
<td>Nickel brazing (Heat exchanger), Stainless steel, EPDM, Silicone, PPS, Fluororesin</td>
<td>Nickel brazing (Heat exchanger), Stainless steel, EPDM, Silicone, PPS, Fluororesin</td>
</tr>
<tr>
<td>Dimensions**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. It should have no condensation.
2. If tap water or deionized water is used, please use water that conforms to Water Quality Standards of the Japan Refrigeration and Air Conditioning Industry Association (JRA GL-02-1994/cooling water system - circulation type - make-up water). The electric conductivity of the deionized water used as the fluid varies depending on the operating conditions.
3. Outlet temperature when the circulating fluid and facility water are rated flow, and the circulating fluid outlet and return port are directly connected. Installation environment, power supply, and facility water are within specification range and stable. Value obtained 10 minutes after the external load is stabilized (after stabilization with no load for HRW030-H2). It may be out of this range when a DI control kit (option Y) is used or in some other operating conditions.
4. The capacity at the circulating fluid outlet when the circulating fluid temperature is 20°C. Pump capacity at 60 Hz indicates the maximum capacity of the HRW○○○-H2S (pump inverter type).
5. Applicable to the HRW○○○-H2S (pump inverter type) only.
6. Minimum volume required for operating only the thermo-chiller. (Circulating fluid temperature: 20°C, including the thermo-chiller’s internal piping or heat exchanger)
7. The automatic circulating fluid recovery function will be provided by selecting option Z for collecting the circulating fluid inside an external piping.
8. Required flow rate for cooling capacity or maintaining the temperature stability.
9. Panel dimensions. These dimensions do not include possible protrusions such as a breaker handle.
10. Weight in the dry state without circulating fluids

1. If tap water or deionized water is used, please use water that conforms to Water Quality Standards of the Japan Refrigeration and Air Conditioning Industry Association (JRA GL-02-1994/cooling water system - circulation type - make-up water). The electric conductivity of the deionized water used as the fluid varies depending on the operating conditions.

1. If tap water or deionized water is used, please use water that conforms to Water Quality Standards of the Japan Refrigeration and Air Conditioning Industry Association (JRA GL-02-1994/cooling water system - circulation type - make-up water). The electric conductivity of the deionized water used as the fluid varies depending on the operating conditions.
Heating Capacity

|-------------------------------|

Circulating fluid temperature [°C]

- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80

Heating capacity [kW]

- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80

Cooling Capacity

|-------------------------------|

Pump Capacity

- HRW002-H2
- HRW002-H2S

Circulating fluid: Tap water

Circulating fluid temperature: 20°C

Outlet pressure [60 Hz]

Outlet pressure [50 Hz]

Return port pressure

Flow rate [L/min]

- 0
- 5
- 10
- 15
- 20
- 25
- 30
- 35
- 40
- 45
- 50
- 55
- 60
- 65
- 70
- 75
- 80
- 85
- 90
- 95
- 100

Outlet pressure [60 Hz]

Outlet pressure [50 Hz]

Return port pressure

Flow rate [L/min]

- 0
- 5
- 10
- 15
- 20
- 25
- 30
- 35
- 40
- 45
- 50
- 55
- 60
- 65
- 70
- 75
- 80
- 85
- 90
- 95
- 100

* If the circulating fluid flow drops below 2 L/min., the shutdown alarm activates and operation stops. Do not use the product when the flow exceeds 16 L/min., since the flow cannot be displayed accurately.

* Pump capacity at 60 Hz indicates the maximum capacity of the HRW002-H2S (pump inverter type).

* If the circulating fluid flow drops below 8 L/min., the shutdown alarm activates and operation stops. Do not use the product when the flow exceeds 50 L/min., since the flow cannot be displayed accurately.

* Pump capacity at 60 Hz indicates the maximum capacity of the HRW008-H2S/015-H2S/030-H2S (pump inverter type).
HRW Series
Common Specifications

Dimensions

*1 Only when the DI control kit (option Y) is selected.

<table>
<thead>
<tr>
<th>Model</th>
<th>Fluorinated fluid type</th>
<th>Ethylene glycol type</th>
<th>Tap/Deionized water type</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRW002-H</td>
<td>HRW002-H1</td>
<td></td>
<td>HRW002-H2</td>
<td>380</td>
<td>665</td>
<td>860</td>
<td>φ18.5 to 20.5</td>
</tr>
<tr>
<td>HRW008-H</td>
<td>HRW008-H1</td>
<td></td>
<td>HRW008-H2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HRW015-H</td>
<td>HRW015-H1</td>
<td></td>
<td>HRW015-H2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HRW030-H</td>
<td>HRW030-H1</td>
<td></td>
<td>HRW030-H2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contact Input/Output

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector no.</td>
<td>P1</td>
</tr>
<tr>
<td>Connector type (on this product’s side)</td>
<td>D-sub 25 P type, Female connector</td>
</tr>
<tr>
<td>Fixing bolt size</td>
<td>M2.6 x 0.45</td>
</tr>
</tbody>
</table>

Input signal
- Insulation method: Photocoupler
- Rated input voltage: 24 VDC
- Operating voltage range: 21.6 to 26.4 VDC
- Rated input current: 5 mA TYP
- Input impedance: 4.7 kΩ

Output signal
- Rated load voltage: 48 VAC or less/30 VDC or less
- Maximum load current (total):When using the power supply of the Thermo-chiller: 200 mA DC (Resistance load/Inductive load)
- When using the power supply of the user’s equipment: 800 mA AC/DC (Resistance load/Inductive load)

Alarm signal
- Rated load voltage: 48 VAC or less/30 VDC or less
- Maximum load current: 800 mA AC/DC (Resistance load/Inductive load)

EMO signal
- Rated load voltage: 48 VAC or less/30 VDC or less
- Maximum load current: 800 mA AC/DC (Resistance load/Inductive load)

Circuit diagram

- 24 VDC
- 24 COM
- 4.7 kΩ
- Emergency off [EMO] switch
- Pin assignment number
- Custom function
- Run/Stop signal
- Operation condition signal
- Warning signal
- Fault signal
- Remote signal
- Temp ready signal
- Contact output COM
- Alarm signal
- Output signal
- Contact output COM
- Output signal

*1 The custom function is equipped for contact input/output. Using the custom function enables the user to set the signal type for contact input/output or pin assignment numbers. For details, please refer to the "Communication Specifications" information.
Communication Functions
(For details, please refer to our "Communication Specifications" information.)

Serial RS-485
The serial RS-485 enables the following items to be written and read out.

<Writing>
- Run/Stop
- Circulating fluid temperature setting
- Circulating fluid automatic recovery start/stop

<Readout>
- Circulating fluid present temperature
- Circulating fluid flow
- Circulating fluid discharge pressure
- Circulating fluid electric resistivity
- Alarm occurrence information
- Status (operating condition) information

1 Only when the circulating fluid automatic recovery function (option Z) is selected.
2 Only when the DI control kit (option Y) is selected.

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector no.</td>
<td>P2</td>
</tr>
<tr>
<td>Connector type (on this product's side)</td>
<td>D-sub 9 P type, Female connector</td>
</tr>
<tr>
<td>Fixing bolt size</td>
<td>M2.6 x 0.45</td>
</tr>
<tr>
<td>Standards</td>
<td>EIA RS485</td>
</tr>
<tr>
<td>Protocol</td>
<td>Modicon Modbus</td>
</tr>
</tbody>
</table>

Circuit diagram:
- SD+
- SD−
- SG

Connector Location
- P3: Not used for the maintenance purpose port
- D-sub 9 (Male receptacle)
- P2: Serial RS-485
 - D-sub 9 (Female receptacle)
- P1: Contact input/output
 - D-sub 25 (Female receptacle)
- Power cable entry

Rear side
Operation Display Panel

- **1.** LCD
- **2.** [START/STOP] key
- **3.** [RESET] key
- **4.** [SEL] key
- **5.** [ENT] key
- **6.** [▲][▼] key
- **7.** [REMOTE] lamp
- **8.** [RUN] lamp
- **9.** [ALARM] lamp

Description No.	**Function**
[START/STOP] key | Starts/Stop the operation.
[RESET] key | Stops the alarm buzzing. Resets the alarm.
[SEL] key | Switches the display.
[ENT] key | Decides the settings.
[▲][▼] key | Moves the cursor and changes the setting values.
[REMOTE] lamp | Lights up when the unit is in the remote status.
[RUN] lamp | Lights up when the unit is in the operating status.
[ALARM] lamp | Lights up when the unit is alarming.

Alarm

This unit can display 23 kinds of alarm messages as standard. Also, it can read out the serial RS-485 communication.

<table>
<thead>
<tr>
<th>Alarm code</th>
<th>Alarm message</th>
<th>Operation status</th>
<th>Main reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Water Leak Detect FLT</td>
<td>Stop</td>
<td>Liquid deposits in the drain pan of this unit.</td>
</tr>
<tr>
<td>02</td>
<td>Incorrect Phase Error FLT</td>
<td>Stop</td>
<td>The power supply to this unit is incorrect.</td>
</tr>
<tr>
<td>05</td>
<td>Reservoir Low Level WRN</td>
<td>Stop</td>
<td>The amount of circulating fluid tank is running low.</td>
</tr>
<tr>
<td>06</td>
<td>Reservoir Low Level FLT</td>
<td>Continue</td>
<td>The amount of circulating fluid tank is running low.</td>
</tr>
<tr>
<td>07</td>
<td>Reservoir High Level WRN</td>
<td>Continue</td>
<td>The amount of circulating fluid in the tank has increased.</td>
</tr>
<tr>
<td>08</td>
<td>Temp. Fuse Cutout FLT</td>
<td>Stop</td>
<td>The temperature of the circulating fluid tank is raised.</td>
</tr>
<tr>
<td>09</td>
<td>Reservoir High Temp. FLT</td>
<td>Stop</td>
<td>Temperature of the circulating fluid has exceeded the limitation.</td>
</tr>
<tr>
<td>10</td>
<td>Return High Temp. FLT</td>
<td>Stop</td>
<td>Temperature of returning circulating fluid has exceeded the limit.</td>
</tr>
<tr>
<td>11</td>
<td>Reservoir High Temp. WRN</td>
<td>Continue</td>
<td>Temperature of the circulating fluid has exceeded the limitation set by user.</td>
</tr>
<tr>
<td>12</td>
<td>Return Low Flow FLT</td>
<td>Continue</td>
<td>The circulating fluid flow has gone below the limit.</td>
</tr>
<tr>
<td>13</td>
<td>Return Low Flow WRN</td>
<td>Continue</td>
<td>Flow rate of the Thermo-chiller has dropped below the set value.</td>
</tr>
<tr>
<td>15</td>
<td>Pump Breaker Trip FLT</td>
<td>Stop</td>
<td>The protective equipment in the circulating fluid driving line has started.</td>
</tr>
<tr>
<td>17</td>
<td>Interlock Fuse Cutout FLT</td>
<td>Stop</td>
<td>Overcurrent is flown to the control circuit.</td>
</tr>
<tr>
<td>18</td>
<td>DC Power Fuse Cutout WRN</td>
<td>Continue</td>
<td>Overcurrent has flowed to the (optional) solenoid valve. (Only for the automatic circulating fluid recovery function - option Z)</td>
</tr>
<tr>
<td>19</td>
<td>FAN Motor Stop WRN</td>
<td>Continue</td>
<td>Cooling fan inside the compressor has stopped.</td>
</tr>
<tr>
<td>21</td>
<td>Controller Error FLT</td>
<td>Stop</td>
<td>The error occurred in the control systems.</td>
</tr>
<tr>
<td>22</td>
<td>Memory Data Error FLT</td>
<td>Stop</td>
<td>The data stored in the controller of this unit went wrong.</td>
</tr>
<tr>
<td>23</td>
<td>Communication Error WRN</td>
<td>Continue</td>
<td>The serial communications between this unit and user’s system has been suspended.</td>
</tr>
<tr>
<td>24</td>
<td>DI Low Level WRN</td>
<td>Continue</td>
<td>DI level of the circulating fluid has gone below the limitation set by user. (Only for DI control kit - option Y)</td>
</tr>
<tr>
<td>25</td>
<td>Pump Inverter Error FLT</td>
<td>Stop</td>
<td>The error occurred in the circulating pump inverter. This alarm is applicable to the HRW□□□H only.</td>
</tr>
<tr>
<td>26</td>
<td>DNEN Comm. Error FLT</td>
<td>Stop</td>
<td>The DeviceNet communications between this unit and user’s system has been suspended. (Only for DeviceNet communication specification - option D)</td>
</tr>
<tr>
<td>27</td>
<td>DNEN Comm. Error WRN</td>
<td>Continue</td>
<td>An error has occurred in the DeviceNet communication system of this unit. (Only for DeviceNet communication specification - option D)</td>
</tr>
<tr>
<td>28</td>
<td>F.Water Low Temp. WRN</td>
<td>Continue</td>
<td>Temperature of facility water has dropped below the set temperature.</td>
</tr>
<tr>
<td>29</td>
<td>F.Water High Temp. WRN</td>
<td>Continue</td>
<td>Temperature of facility water has exceeded the set temperature.</td>
</tr>
</tbody>
</table>

Alarm code

Alarm message

Operation status

Main reason

Common Specifications

HRW Series
Options have to be selected when ordering the thermo-chiller. It is not possible to add them after purchasing the unit.

Analog Communication

HRW [] [] [] C

Analog communication

In addition to the standard contact input/output signal communication and the serial RS-485 communication, analog communication function can be added. The analog communication function enables to write and read out the following items.

- **Writing**
 - Circulating fluid temperature setting
 - Electric resistivity

- **Reading**
 - Circulating fluid present temperature

1. Only when the DI control kit (option Y) is selected.

Scaling voltage - circulating fluid temperature can be set arbitrarily by user.

For details, please refer to our “Communication Specifications” information.

DeviceNet Communication

HRW [] [] [] D

DeviceNet communication

In addition to the standard contact input/output signal communication and the serial RS-485 communication, DeviceNet function can be added. DeviceNet function enables to write and read out the following items.

- **Writing**
 - Run/Stop
 - Circulating fluid temperature setting
 - Circulating fluid automatic recovery start/stop

1. Only when the DI control kit (option Y) is selected.
2. Only when the DI control kit (option Y) is selected.

- **Reading**
 - Circulating fluid present temperature
 - Circulating fluid flow
 - Circulating fluid discharge pressure
 - Electric resistivity
 - Alarm occurrence information
 - Status (operating condition) information

For details, please refer to our “Communication Specifications” information.

NPT Fitting

HRW [] [] [] N

NPT fitting

An adapter is included to change the connection parts of circulating fluid piping and facility water piping to NPT thread type. The adapter must be installed by user.

DI Control Kit

HRW [] [] [] Y

DI control kit

Select this option if you want to maintain the electric resistivity (DI level) of the circulating fluid at a certain level. However, some components have to be fitted user. For details, refer to specification table for this option. Please note that this is not applicable to the fluorinated liquid type.

- Install the DI filter outside the thermo-chiller for piping. Secure the space for installing the DI filter in the rear side of the thermo-chiller.
- It may go outside of the temperature stability range of ±0.3°C when this option is used in some operating conditions.

SI Unit Only

HRW [] [] [] W

SI unit only

The circulating fluid temperature and pressure are displayed in SI units [MPa/°C] only. If this option is not selected, a product with a unit selection function will be provided by default.

- No change in external dimensions

Option symbol

- **C** Analog Communication
- **D** DeviceNet Communication
- **N** NPT Fitting
- **Y** DI Control Kit
- **W** SI Unit Only

Applicable model

<table>
<thead>
<tr>
<th>Allowable circulating fluid</th>
<th>HRW0[]-H1-Y</th>
<th>HRW0[]-H2-Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>60% ethylene glycol aqueous solution</td>
<td>Deionized water</td>
<td></td>
</tr>
</tbody>
</table>

DI level display range

- MΩ·cm

DI level set range

- 0 to 20

Solenoid valve hysteresis for control

- MΩ·cm

DI level reduction alarm set range

- MΩ·cm

1. The DI filter is needed to control the DI level. (SMC Part No.: HRZ-D001)

2. Please purchase additionally because the DI filter is not included in this option. Also, if necessary, additionally purchase the insulating material for the DI filter. (SMC Part No.: HRZ-D002)
Select this option for users who want to use the circulating fluid automatic recovery function. The automatic recovery function is a device which can recover the circulating fluid inside pipings into a sub-tank of the thermo-chiller by the external communication or operation display panel. Some components need to be fitted by user. For details, consult “Product Specifications” information for these options.

<table>
<thead>
<tr>
<th>Applicable model</th>
<th>Common for all models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulating fluid recoverable volume[^1]</td>
<td>L</td>
</tr>
<tr>
<td>Purge gas</td>
<td>—</td>
</tr>
<tr>
<td>Purge gas supply port</td>
<td>—</td>
</tr>
<tr>
<td>Purge gas supply pressure MPa</td>
<td>0.4 to 0.7</td>
</tr>
<tr>
<td>Purge gas filtration µm</td>
<td>0.01 or less</td>
</tr>
<tr>
<td>Regulator set pressure MPa</td>
<td>0.15 to 0.3[^3]</td>
</tr>
<tr>
<td>Recoverable circulating fluid temperature °C</td>
<td>10 to 40</td>
</tr>
<tr>
<td>Recovery start/stop</td>
<td>Start: External communication[^4] or operation display panel/Stop: Automatic</td>
</tr>
<tr>
<td>Timeout error sec</td>
<td>Timer from recovery start to completion</td>
</tr>
<tr>
<td></td>
<td>Stops recovering when the timer turns to set time. Possible set range: 60 to 300, at the time of shipping from the factory: 300</td>
</tr>
<tr>
<td>Height difference with the user system side m</td>
<td>10 or less</td>
</tr>
</tbody>
</table>

[^1]: This is the space volume of the sub-tank when the liquid level of the circulating fluid is within the specification. Guideline of the recovery volume is 80% of the circulating fluid recoverable volume.

[^2]: Before piping, clean inside the pipings with air blow, etc. Use the piping with no dust generation by purge gas. When using resin tube, where necessary, use insert fittings, etc. in order not to deform the tubings when connecting to self-align fittings.

[^3]: At the time of shipping from factory, it is set to 0.2 MPa.

[^4]: For details, please refer to our “Communication Specifications” information.
HRW Series

Optional Accessories

1. **Bypass Piping Set**

 When the circulating fluid goes below the rated flow, cooling capacity will be reduced and the temperature stability will be badly affected. In such a case, use the bypass piping set.

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Applicable model</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRW-BP001</td>
<td>Common for all models</td>
</tr>
</tbody>
</table>

![Bypass Piping Set Diagram](image)

2. **Anti-quake Bracket**

 Bracket for earthquakes

 Prepare the anchor bolts (M12) which are suited to the floor material by user.

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Applicable model</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRZ-TK002</td>
<td>Common for all models</td>
</tr>
</tbody>
</table>

 ![Anti-quake Bracket Diagram](image)

* Necessary to be fitted by user.
3 4-Port Manifold

4-branching the circulating fluid enables 4 temperature controls at the maximum with the 1 unit thermo-chiller. Order the heat insulator for 4 port manifold (HRW-MA002) separately if necessary.

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Applicable model</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRW-MA001</td>
<td>Common for all models</td>
</tr>
<tr>
<td>HRW-MA002</td>
<td></td>
</tr>
</tbody>
</table>

Mounting view (Rear side)

4 DI Filter

This is the ion replacement resin to maintain the electric resistivity of the circulating fluid.

Users who selected the DI control kit (option Y) need to purchase the DI filter separately.

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Applicable model</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRZ-DF001</td>
<td>Common for all models which can select the DI control kit. (option Y)</td>
</tr>
</tbody>
</table>

* The DI filters are consumable. Depending on the status (electric resistivity set value, circulating fluid temperature, piping volume, etc.), product life cycles will vary accordingly.

5 Insulating Material for DI Filter

When the DI filter is used at a high temperature, we recommend that you use this insulating material to protect the radiated heat from the DI filter or possible burns. We also recommend that you use this to prevent heat absorption from the DI filter and to avoid forming condensation.

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Applicable model</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRZ-DF002</td>
<td>Common for all models which can select the DI control kit. (option Y)</td>
</tr>
</tbody>
</table>

Approx. ø220 mm

Approx. 20 kg

Approx. 508 mm

Approx. 598 mm
6 Contaminant Filter

A filter mounted in the circulating fluid circuit to eliminate the dust which is contained in the circulating fluid. (Filtration: 20 \(\mu \text{m} \)) It is provided with its own heat insulator.

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Applicable model</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRW-CF001</td>
<td>Common for all models</td>
</tr>
<tr>
<td>HRW-CF002</td>
<td>Common for all models</td>
</tr>
</tbody>
</table>

* The internal element of the contaminant filter (Part no.: HRW-CF002) is a replacement part. The period in service depends on the operating conditions.

7 60% Ethylene Glycol Aqueous Solution

This solution can be used as a circulating fluid for ethylene glycol-type thermo-chillers. (Capacity: 10 L)

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Applicable model</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRZ-BR001</td>
<td>Common for all models</td>
</tr>
</tbody>
</table>

8 Concentration Meter

This meter can be used to control the concentration of ethylene glycol aqueous solution regularly.

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Applicable model</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRZ-BR002</td>
<td>Common for all models</td>
</tr>
</tbody>
</table>
Warning

1. This catalog shows the specifications of a single unit.
 1. For details, please refer to our “Product Specifications” and thoroughly consider the adaptability between the user’s system and this unit.
 2. Although the protection circuit as a single unit is installed, the user is requested to carry out the safety design for the whole system.

Caution

1. **Model selection**
 In order to select the correct thermo-chiller model, the amount of thermal generation from the user’s system, the operating circulating fluid, and its circulating flow are required. Select a model, by referring to the guideline to model selection on page 263.

2. **Option selection**
 Options have to be selected when ordering the thermo-chiller. It is not possible to add them after purchasing the unit.

Operating Environment/Storage Environment

Caution

1. Do not use in the following environment because it will lead to a breakdown.
 1. Environment like written in “Temperature Control Equipment Precautions.”
 2. Locations where spatter will adhere to when welding.
 3. Locations where it is likely that the leakage of flammable gas may occur.
 4. Locations where the ambient temperature exceeds the limits as mentioned below.
 - During operation 10°C to 35°C
 - During storage 0°C to 50°C (but as long as water or circulating fluid are not left inside the pipings)
 5. Locations where the ambient relative humidity exceeds the limit as mentioned below.
 - During operation 30% to 70%
 - During storage 15% to 85%
 6. (Inside the operation facilities) locations where there is not sufficient space for maintenance.
 7. In locations where the ambient pressure exceeds the atmospheric pressure.

2. The Thermo-chiller does not have clean room specification. It generates dust from the pump inside the unit and the cooling fan for the unit inside.

Circulating Fluid

Caution

1. Avoid oil or other foreign matter entering the circulating fluid.
2. Use ethylene glycol that does not contain additives such as preservatives.
3. The condensation of ethylene glycol aqueous solution must be 60% or less. If the condensation is too high, the pump will be overloaded, resulting in occurrence of “Pump Breaker Trip FLT.”
4. Avoid water moisture entering the fluorinated fluid.
5. Use tap water (including for diluting ethylene glycol aqueous solution) which must meet the water quality standards as mentioned below.

Tap Water (as Circulating Fluid) Quality Standards

The Japan Refrigeration and Air Conditioning Industry Association JRA GL-02-1994 “Cooling water system – Circulation type – Make-up water”

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Standard value</th>
<th>Influence</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH (at 25°C)</td>
<td>—</td>
<td>6.0 to 8.0</td>
<td>O</td>
</tr>
<tr>
<td>Electric conductivity (25°C)</td>
<td>[µS/cm]</td>
<td>100^1 to 300^1</td>
<td>O</td>
</tr>
<tr>
<td>Chloride ion (Cl−)</td>
<td>[mg/L]</td>
<td>50 or less</td>
<td>O</td>
</tr>
<tr>
<td>Sulfuric acid ion (SO4^{2−})</td>
<td>[mg/L]</td>
<td>50 or less</td>
<td>O</td>
</tr>
<tr>
<td>Acid consumption amount (at pH4.8)</td>
<td>[mg/L]</td>
<td>50 or less</td>
<td>O</td>
</tr>
<tr>
<td>Total hardness</td>
<td>[mg/L]</td>
<td>70 or less</td>
<td>O</td>
</tr>
<tr>
<td>Calcium hardness (CaCO3)</td>
<td>[mg/L]</td>
<td>50 or less</td>
<td>O</td>
</tr>
<tr>
<td>Ionic state silica (SiO2)</td>
<td>[mg/L]</td>
<td>30 or less</td>
<td>O</td>
</tr>
<tr>
<td>Iron (Fe)</td>
<td>[mg/L]</td>
<td>0.3 or less</td>
<td>O</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>[mg/L]</td>
<td>0.1 or less</td>
<td>O</td>
</tr>
<tr>
<td>Sulfide ion (S2−)</td>
<td>[mg/L]</td>
<td>Should not be detected</td>
<td>O</td>
</tr>
<tr>
<td>Ammonium ion (NH4^{+})</td>
<td>[mg/L]</td>
<td>0.1 or less</td>
<td>O</td>
</tr>
<tr>
<td>Residual chlorine (Cl)</td>
<td>[mg/L]</td>
<td>0.3 or less</td>
<td>O</td>
</tr>
<tr>
<td>Free carbon (CO2)</td>
<td>[mg/L]</td>
<td>4.0 or less</td>
<td>O</td>
</tr>
</tbody>
</table>

^1 In the case of [MΩ·cm], it will be 0.003 to 0.01.
^∞ Factors that have an effect on corrosion or scale generation.
Even if the water quality standards are met, complete prevention of corrosion is not guaranteed.
Facility Water Supply

Warning

<Water-cooled refrigeration>
1. The water-cooled refrigeration type thermo-chiller radiates heat to the facility water.

Prepare the facility water system that satisfies the facility water specifications below.

2. When using tap water as facility water, use tap water that conforms to the appropriate water quality standards.

Use tap water that conforms to the standards shown below.

**<Tap Water (as Facility Water) Quality Standards>*

The Japan Refrigeration and Air Conditioning Industry Association
JRIA GL-02-1994 “Cooling water system – Circulation type – Circulating water”

<table>
<thead>
<tr>
<th>Standard item</th>
<th>Influence</th>
<th>Reference item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Unit</td>
<td>Standard value</td>
</tr>
<tr>
<td>pH (at 25°C)</td>
<td>—</td>
<td>6.5 to 8.2</td>
</tr>
<tr>
<td>Electric conductivity (25°C) [μS/cm]</td>
<td>[μS/cm]</td>
<td>100 to 800</td>
</tr>
<tr>
<td>Chloride ion (Cl⁻) [mg/L]</td>
<td>[mg/L]</td>
<td>200 or less</td>
</tr>
<tr>
<td>Sulfuric acid ion (SO₄²⁻) [mg/L]</td>
<td>[mg/L]</td>
<td>200 or less</td>
</tr>
<tr>
<td>Acid consumption amount (at pH 8) [mg/L]</td>
<td>[mg/L]</td>
<td>100 or less</td>
</tr>
<tr>
<td>Total hardness [mg/L]</td>
<td>[mg/L]</td>
<td>200 or less</td>
</tr>
<tr>
<td>Calcium hardness (CaCO₃) [mg/L]</td>
<td>[mg/L]</td>
<td>150 or less</td>
</tr>
<tr>
<td>Ionic state silica (SiO₂) [mg/L]</td>
<td>[mg/L]</td>
<td>50 or less</td>
</tr>
<tr>
<td>Iron (Fe) [mg/L]</td>
<td>[mg/L]</td>
<td>1.0 or less</td>
</tr>
<tr>
<td>Copper (Cu) [mg/L]</td>
<td>[mg/L]</td>
<td>0.3 or less</td>
</tr>
<tr>
<td>Sulfide ion (S²⁻) [mg/L]</td>
<td>[mg/L]</td>
<td>Should not be detected</td>
</tr>
<tr>
<td>Ammonium ion (NH₄⁺) [mg/L]</td>
<td>[mg/L]</td>
<td>1.0 or less</td>
</tr>
<tr>
<td>Residual chlorine (Cl) [mg/L]</td>
<td>[mg/L]</td>
<td>0.3 or less</td>
</tr>
<tr>
<td>Free carbon (CO₂) [mg/L]</td>
<td>[mg/L]</td>
<td>4.0 or less</td>
</tr>
</tbody>
</table>

*1. In the case of [μS/cm], it will be 0.001 to 0.01:
2. Factors that have an effect on corrosion or scale generation.
3. Even if the water quality standards are met, complete prevention of corrosion is not guaranteed.

3. Set the supply pressure between 0.3 to 0.7 MPa. Ensure a pressure difference at the facility water inlet/outlet of 0.3 MPa or more.

If the supply pressure is high, it will cause water leakage. If the supply pressure and pressure difference at the facility water inlet/outlet is low, it will cause an insufficient flow rate of the facility water, and poor temperature control.

Transportation/Carriage/Movement

Warning

1. **Transporting with forklift**
 1. It is not possible to hang this product.
 2. The fork insertion position is either on the left side face or right side face of the unit. Be careful not to bump the fork against a caster or level foot and be sure to put through the fork to the opposite side.
 3. Be careful not to bump the fork to the cover panel or piping ports.

2. **Transporting with casters**
 1. This product is heavy and should be moved by at least two people.
 2. Do not grip the pipings on the rear side or the handles of the panel.

Mounting/Installation

Caution

1. Avoid using this product outdoors.
2. Install on a rigid floor which can withstand this product’s weight.
3. Please install a suitable anchor bolt for the anti-quake bracket taking into consideration the user’s floor material.
4. Avoid placing heavy objects on this product.

Piping

Caution

1. Regarding the circulating fluid pipings, consider carefully the suitability for shutoff pressure, temperature and circulating fluid.

If the operating performance specifications are regularly exceeded, the pipings may burst during operation.

2. The surface of the circulating fluid pipings should be covered with the insulating materials which can effectively confine the heat.

Absorbing the heat from the surface of pipings may reduce the cooling capacity performance and the heating capacity may be shortened due to heat radiation.

3. When using fluorinated liquid as the circulating fluid, do not use pipe tape.

Liquid leakage may occur around the pipe tape.

For sealant, we recommend that you use the following sealant: SMC Part No., HRZ-S0003 (Silicone sealant)

4. For the circulating fluid pipings, use clean pipings which have no dust, oil or water moisture inside the pipings, and blow with air prior to undertaking any piping works.

If any dust, oil or water moisture enters the circulating fluid circuit, inferior cooling performance or equipment failure due to frozen water may occur, resulting in bubbles in the circulating fluid inside the tank.

5. Select the circulating fluid pipings which can exceed the required rated flow.

For the rated flow, refer to the pump capacity table.

6. For the circulating fluid piping connection, install a drain pan just in case the circulating fluid may leak.

7. Do not return the circulating fluid to the unit by installing a pump in the user system.
HRW Series

Specific Product Precautions 3

Be sure to read this before handling the products. Refer to page 383 for safety instructions and pages 384 to 387 for temperature control equipment precautions.

Electrical Wiring

Caution

1. Power supply and signal cable should be prepared by user.

2. Provide a stable power supply which is not affected by surge or distortion.

 If the voltage increase ratio \(\frac{dV}{dt}\) at the zero cross should exceed \(40 \, \text{V/200 } \mu\text{sec.}\), it may result in malfunction.

3. This product is installed with a breaker with the following operating characteristics.

 For the user’s equipment (inlet side), use a breaker whose operating time is equal to or longer than the breaker of this product. If a breaker with shorter operating time is connected, the user’s equipment could be cut off due to the inrush current of the motor of this product.

Breaker Operating Characteristics

Common for all models

![Breaker Operating Characteristics Graph](image)

Operation

Caution

1. Confirmation before operation

 1. The circulating fluid should be within the specified range of “HIGH” and “LOW.”

 2. Be sure to tighten the cap for the circulating fluid port until the click sound is heard.

2. Emergency stop method

 In the case of an emergency, press down the EMO switch which is fitted on the front face of this product.

Maintenance

Warning

1. Do not operate the switch with wet hands or touch electrical parts such as an electrical plug. This will lead to an electrical shock.

2. Do not splash water directly on this product for cleaning. This will lead to an electrical shock or a fire.

3. When the panel was removed for the purpose of inspection or cleaning, mount the panel after works were done.

 If the panel is still open, or running the equipment with the panel removed, it may cause an injury or electric shock.

Caution

1. In order to prevent a sudden product failure of the unit, replace the replacement parts every 36 months.

2. Perform an inspection of the circulating fluid every 3 months.

 1. In the case of fluorinated fluids:

 - Discharge the circulating liquid and avoid any dirty objects, or water moisture, or foreign matter entering the system.

 2. In the case of ethylene glycol aqueous solution:

 - Maintain the condensation at 60%.

 3. In case of tap water, deionized water:

 - Replacement is recommended.

3. Check the water quality of facility water every 3 months.

 Regarding the water quality standards for facility water, refer to page 386.