Platform Cylinder

CXT Series

ø12, ø16, ø20, ø25, ø32, ø40

A highly rigid and highly accurate slide table integrated with an actuator.

- Two types of guide rod bearings to accommodate your application

Slide bearing - For heavy loads
Ball bushing bearing - For highly accurate and smooth operation
 be mounted.

- A shock absorber can be installed (option).
- Can be mounted on two sides.

Adjusting bolt with bumper is standard.
Performs the function of a cushion and adjusts the stroke 5 mm on each side, or 10 mm for both sides.

For moving and transferring workpieces.

For moving the receptacle for workpieces used in stamping or press-fitting processes.

For using as a Pick \& Place unit in combination with other actuators.

| Series | $\begin{array}{c}\text { Maximum } \\ \text { load weight } \\ (\mathrm{kg})\end{array}$ | $\begin{array}{c}\text { CXTM (Slide bearing) }\end{array}$ | | $\begin{array}{c}\text { CXTL (Ball bushing bearing) } \\ \text { displacement } \\ (\mathrm{mm})\end{array}$ | $\begin{array}{c}\text { Allowable } \\ \text { (2tatic mass } \\ (\mathrm{kg})\end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Table{ }^{(1)}

displacement

(\mathrm{mm})\end{array} $$
\begin{array}{c}\text { Allowable } \\
\text { static mass } \\
(\mathrm{kg})\end{array}
$$\right]\)

Note 1) Table displacement

Note 2) Allowable static weight An "allowable static mass the allowable amount of static mass that can be applied vertically to
the workpiece mounting surface of the table
while the table is at the stroke end.

Series Variations

CXT Series

Model Selection

Non-rotating Accuracy of Slide Block

Pitching direction

Rolling direction

Yawing direction

Bore size (mm)	CXTM (Slide bearing)		CXTL (Ball bushing bearing)	
	$\theta \mathbf{p ~ (= \theta \mathbf { y })}$	$\theta \mathbf{r}$	$\mathbf{~ (= \theta \mathbf { y })}$	
$\mathbf{1 2}$	$\pm 0.09^{\circ}$	$\pm 0.12^{\circ}$	$\pm 0.05^{\circ}$	$\pm 0.05^{\circ}$
$\mathbf{1 6}$	$\pm 0.08^{\circ}$	$\pm 0.10^{\circ}$	$\pm 0.05^{\circ}$	$\pm 0.04^{\circ}$
$\mathbf{2 0}$	$\pm 0.07^{\circ}$	$\pm 0.08^{\circ}$	$\pm 0.04^{\circ}$	$\pm 0.03^{\circ}$
$\mathbf{2 5}$	$\pm 0.07^{\circ}$	$\pm 0.07^{\circ}$	$\pm 0.04^{\circ}$	$\pm 0.03^{\circ}$
$\mathbf{3 2}$	$\pm 0.08^{\circ}$	$\pm 0.07^{\circ}$	$\pm 0.04^{\circ}$	$\pm 0.03^{\circ}$
$\mathbf{4 0}$	$\pm 0.06^{\circ}$	$\pm 0.06^{\circ}$	$\pm 0.03^{\circ}$	$\pm 0.03^{\circ}$

Maximum Load Mass and Allowable Moment

$\begin{aligned} & \text { Bore size } \\ & (\mathrm{mm}) \end{aligned}$	Bearing	Maximum load mass Wmax (kg)	Allowable moment (N.m)	
			M1 (= M3)	M2
12	Slide bearing	3	1.25	1.68
	Ball bushing bearing		0.53	0.70
16	Slide bearing	7	3.34	4.25
	Ball bushing bearing		1.53	2.11
20	Slide bearing	12	11.4	17.1
	Ball bushing bearing		5.60	7.28
25	Slide bearing	20	11.4	19.3
	Ball bushing bearing		5.60	8.19
32	Slide bearing	30	19.8	23.3
	Ball bushing bearing		10.1	14.8
40	Slide bearing	50	37.3	46.2
	Ball bushing bearing		21.3	27.5

Note) For the purpose of calculating the moment, the length of the arm is the distance that is measured from the guide shaft center (" \bullet " mark). Dimension L from the guide shaft center to the top surface of the table is indicated below.

(mm)						
Bore size	12	16	20	25	32	40
L dimension	19.5	24	28	31	39.5	47.5

Allowable Load Only by Adjustment Bolt

If only the adjustment bolt is used for stopping the load, make sure that the load weight and the speed will be below the curve in the graph on the right, taking into consideration the durability of the rubber bumper that is attached to the end of the adjustment bolt and the vibration and noise that are created when stopping (provided that the maximum load weight is not exceeded).

In conditions in which the load weight and the speed will be above the curve, use a shock absorber (provided that the maximum load weight not exceeded).

Caution

In the case of the ball bushing type, the service life could be drastically shortened if shocks or excessive moments are applied. Therefore, even if the conditions given above are not exceeded, the use of a shock absorber is recommended.

Static Movable Mass when Stopped

When the CXT series cylinder is used for moving the workpiece receptacle, such as in a stamping or press-fitting process, a vertical load will be applied to the top surface of the stopped slide block (refer to the figure on the right). In this case, the allowable mass is greater than the maximum load weight, as given in the table on the right.

\triangle Caution

1. Make sure that the slide block is stopped at the stroke end.
2. Match the center of the mass to be applied with the center of the slide block. The direction of the mass must be vertically downward in relation to the surface on which the workpiece is mounted, as shown in the figure on the right.
3. Do not apply a load that involves shocks such as those caused by pounding (particularly with the ball bushing type).
4. If this mass is applied, the deflection of the guide shaft will also have a large value.

Platform Cylinder CXT Series

$\varnothing 12, \varnothing 16, \varnothing 20, \varnothing 25, \varnothing 32, \varnothing 40$
How to Order

[^0][^1]Specifications

Bore size (mm)	12	16	20	25	32	40
Fluid	Air					
Action	Double acting					
Proof pressure	1.5 MPa					
Maximum operating pressure	$0.7 \mathrm{MPa}{ }^{\text {Note) }}$					
Minimum operating pressure	0.15 MPa					
Ambient and fluid temperature	-10 to $60^{\circ} \mathrm{C}$ (No freezing)					
Piston speed	50 to $500 \mathrm{~mm} / \mathrm{s}$					
Cushion	Bumper (Both ends/Standard), Shock absorber (Option)					
Lubrication	Not required (Non-lube)					
Stroke adjusting range	-10 mm (Extension end, Retraction end: -5 mm each)					

Note) Maximum operating pressure for this product with the bumper feature.
The maximum operating pressure for the cylinder alone is 1 MPa .
Shock Absorber Specifications $\begin{aligned} & \text { For deralaled spectifications about shict } \\ & \text { Irefo to Best } \\ & \text { nneumatics No. } 2 \text {-3. }\end{aligned}$

Model		CXT \square_{16}^{12}	CXT $\square 20$	CXT $\square 25$	CXT $\square{ }^{32}$
Shock absorber model		RB0806	RB1007	RB1411	RB2015
Max. energy absorption (J)		2.94	5.88	14.7	58.8
Stroke absorption (mm)		6	7	11	15
Collision speed		0.05 to $5 \mathrm{~m} / \mathrm{s}$			
Max. operating frequency* (cycle/min)		80	70	45	25
Ambient temperature		-10 to $80^{\circ} \mathrm{C}$			
Spring force (N)	Extended	1.96	4.22	6.86	8.34
	Retracted	4.22	6.86	15.30	20.50
Weight (g)		15	25	65	150

* It denotes the values at the maximum energy absorption per one cycle. Therefore, the operating frequency can be increased according to the energy absorption.

The shock absorber service life is different from that of the CXT cylinder depending on the operating conditions. Refer to the Specific Product Precautions for the replacement period.

Theoretical Output

(N)					
Bore size (mm)	Operating direction	Piston area (mm^{2})	Operating pressure (MPa)		
			0.3	0.5	0.7
12	IN	84.8	25	42	59
	OUT	113	34	57	79
16	IN	151	45	75	106
	OUT	201	60	101	141
20	IN	236	71	118	165
	OUT	314	94	157	220
25	IN	378	113	189	264
	OUT	491	147	245	344
32	IN	603	181	302	422
	OUT	804	241	402	563
40	IN	1056	317	528	739
	OUT	1257	377	628	880

CXT Series

Weight

CXTM (Slide bearing)

Boresize $(\mathrm{mm})$$\quad$Stroke (mm)	15	25	50	75	100	125	150	175	200	250	300
12	$\begin{gathered} 0.85 \\ (0.35) \end{gathered}$	$\begin{gathered} 0.90 \\ (0.35) \\ \hline \end{gathered}$	$\begin{gathered} 1.02 \\ (0.35) \\ \hline \end{gathered}$	$\begin{gathered} 1.13 \\ (0.36) \\ \hline \end{gathered}$	$\begin{gathered} 1.25 \\ (0.37) \end{gathered}$	-	-	-	-	-	-
16	$\begin{gathered} 1.18 \\ (0.50) \\ \hline \end{gathered}$	$\begin{gathered} 1.24 \\ (0.50) \\ \hline \end{gathered}$	$\begin{gathered} 1.39 \\ (0.51) \\ \hline \end{gathered}$	$\begin{gathered} 1.54 \\ (0.52) \\ \hline \end{gathered}$	$\begin{gathered} 1.68 \\ (0.53) \\ \hline \end{gathered}$	-	-	-	-	-	-
20	-	$\begin{gathered} 2.35 \\ (0.85) \\ \hline \end{gathered}$	$\begin{gathered} 2.61 \\ (0.87) \\ \hline \end{gathered}$	$\begin{gathered} 2.89 \\ (0.88) \\ \hline \end{gathered}$	$\begin{gathered} 3.15 \\ (0.90) \\ \hline \end{gathered}$	$\begin{gathered} 3.41 \\ (0.91) \end{gathered}$	$\begin{gathered} 3.66 \\ (0.93) \end{gathered}$	$\begin{gathered} 3.92 \\ (0.94) \end{gathered}$	$\begin{gathered} 4.18 \\ (0.96) \end{gathered}$	-	-
25	-	$\begin{gathered} 2.76 \\ (1.09) \\ \hline \end{gathered}$	$\begin{gathered} 3.03 \\ (1.11) \\ \hline \end{gathered}$	$\begin{gathered} 3.34 \\ (1.14) \\ \hline \end{gathered}$	$\begin{gathered} 3.62 \\ (1.16) \\ \hline \end{gathered}$	$\begin{gathered} 3.89 \\ (1.18) \\ \hline \end{gathered}$	$\begin{gathered} 4.16 \\ (1.21) \\ \hline \end{gathered}$	$\begin{gathered} 4.43 \\ (1.23) \\ \hline \end{gathered}$	$\begin{gathered} 4.70 \\ (1.25) \\ \hline \end{gathered}$	$\begin{gathered} 5.25 \\ (1.30) \\ \hline \end{gathered}$	$\begin{gathered} 5.79 \\ (1.34) \\ \hline \end{gathered}$
32	-	$\begin{gathered} 4.61 \\ (2.06) \\ \hline \end{gathered}$	$\begin{gathered} 4.96 \\ (2.10) \\ \hline \end{gathered}$	$\begin{gathered} 5.32 \\ (2.14) \end{gathered}$	$\begin{gathered} 5.67 \\ (2.17) \\ \hline \end{gathered}$	$\begin{gathered} 5.95 \\ (2.21) \\ \hline \end{gathered}$	$\begin{gathered} 6.31 \\ (2.25) \\ \hline \end{gathered}$	$\begin{gathered} 6.64 \\ (2.29) \\ \hline \end{gathered}$	$\begin{gathered} 6.99 \\ (2.33) \end{gathered}$	$\begin{gathered} 7.67 \\ (2.41) \end{gathered}$	$\begin{gathered} 8.36 \\ (2.49) \\ \hline \end{gathered}$
40	-	$\begin{gathered} 8.28 \\ (3.71) \\ \hline \end{gathered}$	$\begin{array}{r} 8.79 \\ (3.75) \\ \hline \end{array}$	$\begin{gathered} 9.29 \\ (3.79) \\ \hline \end{gathered}$	$\begin{gathered} 9.79 \\ (3.83) \\ \hline \end{gathered}$	$\begin{aligned} & 10.34 \\ & (3.87) \\ & \hline \end{aligned}$	$\begin{aligned} & 10.84 \\ & (3.91) \\ & \hline \end{aligned}$	$\begin{array}{r} 11.36 \\ (3.95) \\ \hline \end{array}$	$\begin{aligned} & 11.87 \\ & (3.99) \\ & \hline \end{aligned}$	$\begin{aligned} & 12.88 \\ & (4.07) \\ & \hline \end{aligned}$	$\begin{array}{r} 13.91 \\ (4.15) \\ \hline \end{array}$

CXTL (Ball bushing bearing)

Bore size (mm) Stroke (mm)	15	25	50	75	100	125	150	175	200	250	300
12	$\begin{gathered} 0.75 \\ (0.41) \\ \hline \end{gathered}$	$\begin{gathered} 0.78 \\ (0.42) \\ \hline \end{gathered}$	$\begin{gathered} 0.85 \\ (0.42) \\ \hline \end{gathered}$	$\begin{gathered} 0.92 \\ (0.42) \\ \hline \end{gathered}$	$\begin{array}{r} 0.98 \\ (0.43) \\ \hline \end{array}$	-	-	-	-	-	-
16	$\begin{gathered} 1.05 \\ (0.57) \\ \hline \end{gathered}$	$\begin{gathered} 1.08 \\ (0.57) \\ \hline \end{gathered}$	$\begin{gathered} 1.18 \\ (0.58) \\ \hline \end{gathered}$	$\begin{gathered} 1.27 \\ (0.59) \\ \hline \end{gathered}$	$\begin{gathered} 1.35 \\ (0.60) \\ \hline \end{gathered}$	-	-	-	-	-	-
20	-	$\begin{gathered} 2.00 \\ (1.02) \\ \hline \end{gathered}$	$\begin{gathered} 2.15 \\ (1.04) \\ \hline \end{gathered}$	$\begin{gathered} 2.32 \\ (1.05) \\ \hline \end{gathered}$	$\begin{gathered} 2.46 \\ (1.07) \\ \hline \end{gathered}$	$\begin{gathered} 2.60 \\ (1.08) \\ \hline \end{gathered}$	$\begin{gathered} 2.75 \\ (1.10) \\ \hline \end{gathered}$	$\begin{gathered} 2.89 \\ (1.11) \\ \hline \end{gathered}$	$\begin{gathered} 3.03 \\ (1.13) \\ \hline \end{gathered}$	-	-
25	-	$\begin{gathered} 2.41 \\ (1.25) \\ \hline \end{gathered}$	$\begin{gathered} 2.57 \\ (1.28) \\ \hline \end{gathered}$	$\begin{gathered} 2.77 \\ (1.30) \\ \hline \end{gathered}$	$\begin{gathered} 2.92 \\ (1.33) \\ \hline \end{gathered}$	$\begin{gathered} 3.08 \\ (1.35) \\ \hline \end{gathered}$	$\begin{gathered} 3.24 \\ (1.37) \\ \hline \end{gathered}$	$\begin{gathered} 3.40 \\ (1.39) \\ \hline \end{gathered}$	$\begin{gathered} 3.56 \\ (1.42) \\ \hline \end{gathered}$	$\begin{gathered} 3.78 \\ (1.46) \\ \hline \end{gathered}$	$\begin{gathered} 4.19 \\ (1.50) \\ \hline \end{gathered}$
32	-	$\begin{gathered} 4.22 \\ (2.26) \\ \hline \end{gathered}$	$\begin{gathered} 4.45 \\ (2.30) \\ \hline \end{gathered}$	$\begin{gathered} 4.69 \\ (2.34) \\ \hline \end{gathered}$	$\begin{gathered} 4.92 \\ (2.38) \\ \hline \end{gathered}$	$\begin{gathered} 5.08 \\ (2.42) \\ \hline \end{gathered}$	$\begin{gathered} 5.32 \\ (2.46) \\ \hline \end{gathered}$	$\begin{gathered} 5.54 \\ (2.50) \\ \hline \end{gathered}$	$\begin{gathered} 5.77 \\ (2.54) \\ \hline \end{gathered}$	$\begin{gathered} 6.21 \\ (2.62) \\ \hline \end{gathered}$	$\begin{gathered} 6.66 \\ (2.70) \\ \hline \end{gathered}$
40	-	$\begin{gathered} 7.53 \\ (4.31) \\ \hline \end{gathered}$	$\begin{gathered} 7.83 \\ (4.35) \\ \hline \end{gathered}$	$\begin{gathered} 8.13 \\ (4.39) \\ \hline \end{gathered}$	$\begin{gathered} 8.42 \\ (4.43) \\ \hline \end{gathered}$	$\begin{gathered} 8.76 \\ (4.47) \\ \hline \end{gathered}$	$\begin{gathered} 9.06 \\ (4.51) \\ \hline \end{gathered}$	$\begin{gathered} 9.37 \\ (4.55) \\ \hline \end{gathered}$	$\begin{gathered} 9.67 \\ (4.59) \\ \hline \end{gathered}$	$\begin{aligned} & 10.27 \\ & (4.67) \\ & \hline \end{aligned}$	$\begin{aligned} & 10.88 \\ & (4.74) \\ & \hline \end{aligned}$

Note 1) (): Denotes the values of the movable parts weight. (Movable parts weight of a cylinder is included, too.)
Note 2) The weight indicated above does not include a shock absorber.

Series Applicable to Operating Environments that Do Not Accept Copper

- Copper/Fluorine-free specifications 20- series

[^2]CXTL
Guide rod/bearing

ø32

Long stroke

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Slide block	Aluminum alloy	Anodized
2	Plate A	Aluminum alloy	Anodized
3	Plate B	Aluminum alloy	Anodized
$\mathbf{4}$	Guide rod	Carbon steel	Hard chrome plating
5	Slide bearing	Bearing alloy	
6	Ball bushing bearing	-	
7	Type C retaining ring	Carbon tool steel	Phosphate coating
$\mathbf{8}$	Adapter	Carbon steel	Electroless nickel plating
9	Connected disk	Carbon steel	Electroless nickel plating
10	Washer	Carbon steel	Zinc chromated
11	Type C retaining ring	Carbon tool steel	Phosphate coating
$\mathbf{1 2}$	Hexagon sockethead cap screw	Carbon steel	Zinc chromated
13	Spring washer	Steel wire	Zinc chromated
$\mathbf{1 4}$	Adjusting bolt (With bumper)	Carbon steel, Urethane	Zinc chromated
$\mathbf{1 5}$	Nut	Carbon steel	Zinc chromated
$\mathbf{1 6}$	Shock absorber	-	Option
$\mathbf{1 7}$	Nut	Carbon steel	Zinc chromated
$\mathbf{1 8}$	Parallel pin	Carbon steel	

Component Parts

No.	Description	Material	Note
19	Hexagon socket head cap screw	Carbon steel	Zinc chromated
20	Grease nipple	-	$\varnothing 16$ to $\varnothing 40$ Nickel plating
21	Hexagon socket head cap screw	Carbon steel	Zinc chromated
22	Cylinder tube	Aluminum alloy	Hard anodized
23	Collar	Aluminum alloy	Anodized
24	Piston	Aluminum alloy	Chromated
25	Piston rod	Stainless steel	$\varnothing 12$ to $\varnothing 25$
		Carbon steel	ø32, ø40 Hard chrome plating
26	Type C retaining ring	Carbon tool steel	Phosphate coating
27	Bumper A	Urethane	
28	Bumper B	Urethane	
29	Magnet	-	
30	Bottom plate	Aluminum alloy	Anodized
31	Wear ring	Resin	
32	Rod seal	NBR	
33	Piston seal	NBR	
34	Tube gasket	NBR	

Replacement Parts/Seal Kit

Moder	Kit no.					
Cylinder Model	CXT■12	CXT■16	CXT $\square 20$	CXT $\square 25$	CXT $\square 32$	CXT $\square 40$
Stroke	CDQSB12	CDQSB16	CDQSB20	CDQSB25	CDQ2A32	CDQ2A40
Standard stroke	CQSB12-PS	CQSB16-PS	CQSB20-PS	CQSB25-PS	CQ2B32-PS	CQ2B40-PS
Long stroke	CQSB12-L-PS	CQSB16-L-PS	CQSB20-L-PS	CQSB25-L-PS	CQ2A32-L-PS	CQ2A40-L-PS

[^3]
CXT Series

Cylinder form

Bore size (mm)	Standard stroke (mm)	A	B	C	d			E	G	GP	H	HA	HG	HN	HP	HT	J		JK	L	LD
					Slide	Ball bu	shing														
12	15, 25	8.5	8	4	16			25	7.5	50	34	6	14.5	34	33	18	M5		9.5	68	4.3
16	15, 25	7.5	9.5	5	18			29	6.5	65	40	6.5	16	39.5	39	21	M6 \times		9.5	75	5.2
20	25,50	9.5	11	6.5	25	1		36	8.5	80	46	9	18	44.1	45	24	M8 \times	1.25	10	86	6.9
25	25, 50	9.5	11	6.5	25			40	8.5	90	54	9	23	55	53	28	M8 \times	1.25	10	86	6.9
Bore size (mm)	MM	M	(N)	(NA)	N		PA*	PB	PW	Q	QW			RW	S	T	U	W	X	Y	Z
12	M 4×0.7	6	8	27	M8	$\times 1.0$	30	60	80	85	26	RB0	806	17.5	96	13	1	77	22	7.5	5
16	M5 $\times 0.8$	8	8	27	M8	$\times 1.0$	45	70	95	90	40	RB0	806	15	103	13	2	92	22	7.5	5
20	M6 $\times 1$	10	10	29	M10	+ 1.0	60	100	120	105	46	RB1	007	26	122	17	2	117	29.5	8	5.5
25	M6x 1	10	12	50	M14	1.5	60	100	130	105	50	RB1	411	22	122	17	2	127	32.5	9	5.5

Long Stroke

(mm)				
Bore size (mm)	Stroke range (mm)	X	Y	Z
$\mathbf{1 2}$	$50,75,100$	32	7.5	7.5
$\mathbf{1 6}$	$50,75,100$	32	7.5	7.5
$\mathbf{2 0}$	$75,100,125,150,175,200$	41	8	8
$\mathbf{2 5}$	$75,100,125,150,175,200,250,300$	44	9	9

$\begin{aligned} & \text { Bore size } \\ & (\mathrm{mm}) \end{aligned}$	Standard stroke (mm)	A		d	E	F	G	GP	H	HG	HN	HP	HT	L	(N$)$	(NA)	$\mathbf{P}^{\text {Note) }}$	PA*	PB	PW	Q
			Slide	Ball bushing																	
32	25, 50, 75, 100	10.5	28	20	45	27	9.5	110	66	26.5	67.6	64	33.5	100	14	53	1/8	70	120	160	121
40	25, 50, 75, 100	11.5	36	25	52	31	10.5	130	78	30.5	77.6	74	40.5	136	12	51	1/8	90	140	190	159

Bore size (mm)	QW	RW	\mathbf{S}	\mathbf{T}	\mathbf{W}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
$\mathbf{3 2}$	60	33	140	19	157	33	10	7.5
$\mathbf{4 0}$	84	35	180	21	187	39.5	12.5	7.5

* PA dimension is the center sorted factor of the L dimension.

Note) Rc, NPT and G ports can be selected.

Long Stroke				
Bore size (mm)	Stroke range (mm)	\mathbf{y}		
$\mathbf{3 2}$	$125,150,175,200,250,300$	45.5	10	10
40	$125,150,175,200,250,300$	55	12.5	12.5

CXT Series
Auto Switch Mounting 1
Minimum Stroke for Mounting of Auto Switch

Application	No. Auto switch of auto switches mounted	D-M9 \square V	D-A9 \square V	D-A9 \square	$\begin{aligned} & \text { D-M9 } \square W V \\ & \text { D-M9 } \square \text { AV } \end{aligned}$	D-M9 \square	$\begin{aligned} & \text { D-M9■W } \\ & \text { D-M9■A } \end{aligned}$	D-P3DWA
$\begin{aligned} & \text { CXT } \square 12 \\ & \text { to } \\ & \text { CXT } \square 25 \end{aligned}$	1	5	5	10	10	15	20	15
	2	5	10	10	10	15	20	15
cXT^{32}	1	5	5	10	10	10	15	15
	2	5	10	10	15	10	15	15

* D-P3DW is com	ible with ø25 to \varnothing						
Application		$\begin{aligned} & \text { D-F7口V } \\ & \text { D-J79C } \end{aligned}$	$\begin{aligned} & \text { D-A7 } \square \\ & \text { D-A8 } \square \\ & \text { D-A73C } \\ & \text { D-A80C } \end{aligned}$	$\begin{aligned} & \text { D-F7■WV } \\ & \text { D-F7BAV } \end{aligned}$	$\begin{aligned} & \text { D-A7■H } \\ & \text { D-A80H } \\ & \text { D-F7■ } \\ & \text { D-J79 } \end{aligned}$	D-A79W	$\begin{aligned} & \text { D-F7口W } \\ & \text { D-J79W } \\ & \text { D-F7BA } \\ & \text { D-F7NT } \\ & \text { D-F79F } \\ & \hline \end{aligned}$
$\operatorname{cXT}_{40}^{32}$	1	5	5	10	15	15	20
	2	5	10	15	15	20	20

Proper Auto Switch Mounting Position (Detection at stroke end) and Its Mounting Height
D-M9■
$\varnothing 12$
D-M9■W
D-M9■A
D-M9■V
D-M9■WV
D-M9■AV
D-A9■
D-A9■V
D-P3DWA \square
ø16, 20, 25

ø32, 40

Proper Auto Switch Mounting Position/Standard Stroke

	$\begin{aligned} & \text { D-M9 } \square / M 9 \square V \\ & \text { D-M9 } \square \text { W/M9 } \square W V \end{aligned}$			$\begin{aligned} & \text { D-M9 } \square A \\ & \text { D-M9 } \square \mathbf{A V} \end{aligned}$			$\begin{aligned} & \text { D-A9 } \square \\ & \text { D-A9 } \square \end{aligned}$			D-P3DWA	
	A	B	W	A	B	W	A	B	W	A	B
12	5.5	4.5	5.5	5.5	4.5	7.5	1.5	0	1.5 (4)	-	-
16	6	4	6	6	4	8	2	0	2 (4.5)	-	-
20	10	7.5	2.5	10	7.5	4.5	6	3.5	-1.5 (1)	-	-
25	11	9.5	0.5	11	9.5	2.5	7	5.5	-3.5(-1)	6.5	5
32	12	9	1	12	9	3	8	5	-3(-0.5)	7.5	4.5
40	16	11.5	-1.5	16	11.5	0.5	12	7.5	-5.5(-3)	11.5	7

Proper Auto Switch Mounting Position/Long Stroke

	$\begin{aligned} & \text { D-M9 } \square / \text { M9 } \square \text { V } \\ & \text { D-M9 } \square \text { W9 } \end{aligned}$			$\begin{aligned} & \text { D-M9 } \square \mathbf{A} \\ & \text { D-M9 } \square \text { AV } \end{aligned}$			$\begin{aligned} & \text { D-A9 } \square \\ & \text { D-A9 } \square \text { V } \end{aligned}$			D-P3DWA	
	A	B	W	A	B	W	A	B	W	A	B
12	9	11	-1	9	11	1	5	7	-5(-2.5)	-	-
16	9.5	10.5	-0.5	9.5	10.5	1.5	5.5	6	-4.5(-2)	-	-
20	13	16	-6	13	16	-4	9	11.5	-10(-7.5)	-	-
25	14	18	-8	14	18	-6	10	13.5	-12 (-9.5)	6.5	5
32	12.5	20.5	-10.5	12.5	20.5	-8.5	8.5	16.5	-14.5(-12)	8	16
40	16	26.5	-16.5	16	26.5	-14.5	12	22.5	-20.5(-18)	11.5	22

[^4]Note 2) W is applicable when mounting D-A9■, D-M9■, D-M9 \square W and D-M9 \square A.
Note 3) Adjust the auto switch after confirming the operating conditions in the actual setting
718

Auto Switch Mounting Height/ Standard Stroke, Long Stroke

Auto switch model	$\begin{array}{\|l\|} \hline \text { D-M9 } \square V \\ \text { D-M9 }- \text { WV } \\ \text { D-M9 } \square \text { AV } \end{array}$	D-A9■V	D-P3DWA
Bore size	Hs	Hs	Hs
12	19	17	-
16	21	19	-
20	24	22.5	-
25	26	24.5	33
32	29	27	35.5
40	32.5	30.5	39

Auto Switch Proper Mounting Position（Detection at Stroke End）and Its Mounting Height

Auto Switch Proper Mounting Position／Standard Stroke

	$\begin{aligned} & \text { D-A73 } \\ & \text { D-A80 } \end{aligned}$		$\begin{aligned} & \hline \text { D-A72/A7口H } \\ & \text { D-A80H/A73C } \\ & \text { D-A80C/F7口/J79 } \\ & \text { D-F7口W/J79W } \\ & \text { D-F7口V/F7口WV } \\ & \text { D-F79F/J79C } \\ & \text { D-F7BA/F7BAV } \\ & \hline \end{aligned}$		D－A79W		D－F7NT	
	A	B	A	B	A	B	A	B
32	9	6	9.5	6.5	6.5	3.5	14.5	10.5
40	13	8.5	13.5	9	10.5	6	18.5	13

Auto Switch Proper Mounting Position／Long Stroke

	$\begin{aligned} & \text { D-A73 } \\ & \text { D-A80 } \end{aligned}$		D－A72／A7■H D－A80H／A73C D－A80C／F7口／J79 D－F7ロW／J79W D－F7ロV／F7口WV D－F79F／J79C D－F7BA／F7BAV		D－A79W		D－F7NT	
	A	B	A	B	A	B	A	B
32	9.5	17.5	10	18	7	15	15	23
40	13	23.5	13.5	24	10.5	21	18.5	29

Note ）Adjust the auto switch after confirming the operating conditions in the actual setting．
Auto Switch Mounting Height／Standard Stroke，Long Stroke

Auto switch model Bore size	$\begin{aligned} & \text { D-A7■ } \\ & \text { D-A80 } \end{aligned}$	$\begin{aligned} & \text { D-A7■H } \\ & \text { D-A80H } \\ & \text { D-F7口 } \\ & \text { D-J79 } \\ & \text { D-F7■W } \\ & \text { D-J79W } \\ & \text { D-F79F } \\ & \text { D-F7BA } \\ & \text { D-F7NT } \end{aligned}$	$\begin{aligned} & \text { D-A73C } \\ & \text { D-A80C } \end{aligned}$	D－A79W	$\begin{aligned} & \text { D-F7 } \square V \\ & \text { D-F7 } \square W V \\ & \text { D-F7BV } \end{aligned}$	D－J79C
	Hs	Hs	Hs	Hs	Hs	Hs
32	31.5	32.5	38.5	34	35	38
40	35	36	42	37.5	38.5	41.5

Operating Range

	（mm）					
Auto switch model	Bore size					
	12	16	20	25	32	40
D－M9■／M9 \square V D－M9 \square W／M9 \square WV D－M9 \square A／M9 \square AV	2.5	4	5.5	5.5	6	5.5
D－A9 $\square /$ A9 $\square \mathrm{V}$	6	7.5	10	10	9.5	9.5
D－F7口／F7口V D－J79／J79C D－F7 \square W／F7 $\square W V$ D－J79W D－F7BA／F7BAV D－F7NT／F79F	－	－	－	－	6	6
D－A7ロ／A80	－	－	－	－	12	11
D－A79W	－	－	－	－	13	14
D－P3DWA	－	－	－	6	6	6

＊Since this is a guideline including hysteresis，not meant to be guaranteed． （Assuming approximately $\pm 30 \%$ dispersion）
There may be the case it will vary substantially depending on an ambient environment．
＊Auto switch mounting brackets BQ2－012 are not used for sizes over ø32 of
D－A9 $\square(\mathrm{V}) / \mathrm{M} 9 \square(\mathrm{~V}) / \mathrm{M} 9 \square \mathrm{~W}(\mathrm{~V}) / \mathrm{M} 9 \square \mathrm{~A}(\mathrm{~V})$ types．The above values indicate the operating range when mounted with the current auto switch installation groove．

CXT Series
Auto Switch Mounting 2
Auto Switch Mounting Bracket: Part No.

Note) When shipping cylinders, auto switch mounting brackets and auto switches are shipped together.

1 * For solid state auto switches, auto switches with a pre-wired connector are also available. Refer to pages 1192 and 1193 for details.
I * Normally closed ($\mathrm{NC}=\mathrm{b}$ contact) solid state auto switches ($\mathrm{D}-\mathrm{M} 9 \square \mathrm{E}(\mathrm{V})$) are also available. For details, refer to page 1592-1.

* D-A7/A8/F7/J7 types cannot be mounted on $\varnothing 12$ to $ø 25$.
- If the cylinder is used in an application in which a magnetic material is placed in close contact around the cylinder as shown in the graph on the below (including cases in which even one of the sides is in close contact) the operation of auto switches could become unstable. Therefore, please check with SMC for this type of application.

Magnetic substance
(Iron plate, etc.)

Magnetic substance
(Iron plate, etc.)

1 Adjustable Stroke

The stroke adjustment range may be expanded with a long adjustment bolt.

How to Order

Specifications

Model	CXT $\square \mathbf{1 2 , 1 6}$	CXT $\square \mathbf{2 0 , 2 5}$	CXT $\square \mathbf{3 2}$	CXT $\square \mathbf{4 0}$
Stroke adjustment range	-26 mm			
(Single side -13 mm)	(Single side -14 mm)	-44 mm (Single side -22 mm)	-40 mm (Single side -20 mm)	

* Specifications other than the above are the same as the standard type.

Dimensions (Dimensions other than those below are the same as the standard type.)

Cylinder bore (mm)	A	\mathbf{N}	NA	\mathbf{t}
$\mathbf{1 2}$	8.5 to 21.5	32	40.8	4
$\mathbf{1 6}$	7.5 to 20.5	32	40.8	4
$\mathbf{2 0}$	9.5 to 23.5	37	46.7	4
$\mathbf{2 5}$	9.5 to 23.5	39	67.3	6
$\mathbf{3 2}$	10.5 to 32.5	49	73.2	6
$\mathbf{4 0}$	$\mathbf{1 1 . 5}$ to 31.5	49	73.2	6

2 Fluororubber Seal (Cylinder unit only)

Fluororubber is used only for the cylinder unit seal.

How to Order

Specifications

Seal material	Fluororubber (Cylinder unit only)

* Specifications other than the above are the same as the standard type.

Specific Product Precautions

Be sure to read this before handling the products.
Refer to back page 50 for Safety Instructions and pages $\mathbf{3}$ to 12 for Actuator and Auto Switch Precautions.

Operating Precautions

\triangle Caution

1. Make sure not to apply to the slide block a load that exceeds the value that has been calculated in the selection procedures.
2. Operate the cylinder securing it by its plates, not by securing it by its slide block.
3. The clearance between the slide block and the plate at the stroke end is approximately 1 mm to 6 mm . It could be extremely dangerous, as there is the risk of getting your fingers caught.
Install a cover as necessary.
4. At both stroke ends, adjust the damper portion at the end of the adjusting bolt so that it comes in contact with the slide block. (The clearance between the slide block and the plate must be 1 mm or more.)
If it is operated without making any contact, the piston rod of the actuating cylinder or the connecting hardware (adapter) could become damaged by an excessive impact, or the slide block could collide with the plate and create an abnormal noise.
5. The load weight or operating speed will be limited if only the adjusting bolt is used.
Refer to the section on "Allowable load when only the adjustment bolt is used" on page 711
6. Please contact SMC if this product will be used in an environment in which the piston rod and the guide shaft surfaces will be exposed to water (hot water), coolant, cutting chips, or dust.
7. The slide block bearings must be greased periodically. Inject grease (Class 1 or 2 lithium soap grease consistency) through the grease inlet.
Note) On those with a cylinder bore of $\varnothing 12$, apply grease to the guide shaft.
8. To operate the cylinder, use a non-lubricating air supply. Use turbine oil Class 1 (ISO VG32), if lubricated. (Using machine oil or spindle oil are not allowed.)

Mounting

© Caution

1. While a high level of flatness is desired for the surface on which the cylinder is to be mounted, if sufficient flatness cannot be attained, use shims to adjust the installation of the cylinder so that the slide block can operate throughout its stroke under the minimum operating pressure.
2. Do not scratch or gouge the piston rod of the actuating cylinder, as this could damage the rod seal and lead to air leaks.
The same applies to the guide shaft.
3. Make sure not to apply shocks or excessive moment to the slide block of the ball bushing type.
4. The port direction of the actuating cylinder can be changed in 90° increments by removing the four bolts that secure the cylinder in place.
After changing the direction, verify the operation at the minimum operating pressure.
5. Before the installation, thoroughly flush out the piping to prevent dust or cutting chips from entering the cylinder.
6. The mounting position of the adjusting bolt and the shock absorber cannot be inverted due to the constraints imposed by the locating pin for the shock absorber that is provided on the slide block.
To invert the position, please contact SMC.

Handling on Shock Absorber

© Caution

1. The RB series (SMC made) shock absorbers can absorb a wide range of energy without requiring adjustment. (No adjustment screw is provided.)
2. The screw at the bottom is not for adjustment.

Never turn this screw as it could cause an oil leak (lowered performance).
3. Do not scratch the surface of the shock absorber rod because doing so could affect the shock absorber's durability or lead to poor retraction.

* For detailed specifications about the shock absorber, refer to Best Pneumatics No. 2-3.

Service Life and Replacement Period of Shock Absorber

\triangle Caution

1.Allowable operating cycle under the specifications set in this catalog is shown below.
1.2 million cycles RB08 $\square \square$

2 million cycles RB10 $\square \square$ to RB2725
Note) Specified service life (suitable replacement period) is the value at room temperature (20 to $25^{\circ} \mathrm{C}$). The period may vary depending on the temperature and other conditions. In some cases the absorber may need to be replaced before the allowable operating cycle above.

[^0]: *1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.
 Consult with SMC regarding water resistant types with the above model numbers.
 *2 1 m type lead wire is only applicable to D-A93.

 * Lead wire length symbols:

 $$
 \begin{array}{rll}
 .5 \mathrm{~m} & \ldots ~ & \text { Nil }
 \end{array} \text { (Example) M9NW } 1 \text { (Example) M9NWM }
 $$

 * Solid state auto switches marked with " \bigcirc " are produced upon receipt of order.
 * D-P3DWA \square is compatible with ø25 to ø40.

[^1]: * Since there are other applicable auto switches than listed, refer to page 720 for details.
 *For details about auto switches with pre-wired connector, refer to pages 1192 and 1193.

[^2]: * For details, refer to the SMC website.

[^3]: * Seal kit includes (32, (33) and (34). Order the seal kit with the kit number.
 * Since the seal kit does not include a grease pack, order it separately

 Grease pack part no.: GR-S-010 (10 g)

[^4]: Note 1) (): Denotes the values of D-A93.

