For Water
Digital Flow Switch
Series PF2W

How to Order

Integrated Display Type

PF2W7 20 - 03 - 27 - M

Flow rate range

04 0.5 to 4 L/min
20 2 to 16 L/min
40 5 to 40 L/min
11 10 to 100 L/min

Thread type

Nil RC
N NPT
F G

Port size

Symbol Flow rate (L/min) Applicable model
03 3/8
PF2W704, PF2W720
04 1/2
PF2W720, PF2W740
06 3/4
PF2W740, PF2W711
10 1
PF2W711

Specifications

Model PF2W704 PF2W720 PF2W740 PF2W711

Measured fluid Water

Flow rate measurement range 0.35 to 4.5 L/min 1.7 to 17.0 L/min 3.5 to 45 L/min 7 to 110 L/min

Set flow rate range 0.35 to 4.5 L/min 1.7 to 17.0 L/min 3.5 to 45 L/min 7 to 110 L/min

Rated flow range 0.5 to 4 L/min 2 to 16 L/min 5 to 40 L/min 10 to 100 L/min

Minimum set unit 0.05 L/min 0.1 L/min 0.5 L/min 1 L/min

Accumulated pulse flow rate exchange value (Pulse width: 50 ms) 0.05 L/pulse 0.1 L/pulse 0.5 L/pulse 1 L/pulse

Operating fluid temperature 0 to 50 °C

Accuracy ±5% F.S. ±3% F.S.

Repeatability ±3% F.S. ±2% F.S.

Temperature characteristics (Note 1) ±5% F.S. (0 to 50 °C, 25 °C reference)

Current consumption (No load) 70 mA or less 80 mA or less

Weight (Note 2) 460 g 520 g 700 g 1150 g

Port size (Rc, NPT, G) 3/8 3/8, 1/2 1/2, 3/4 3/4, 1

Detection type Karman vortex

Indicator light 3-digit, 7-segment LED

Display units Instantaneous flow rate L/min, gal(US)/min

Accumulated flow L, gal(US)

Operating pressure range 0 to 1 MPa

Proof pressure 1.5 MPa

Accumulated flow range (Note 4) 0 to 999999 L

Ambient temperature range Operating: 0 to 50 °C, Stored: −25 to 85 °C (with no freezing and condensation)

Output specifications Switch output NPN open collector: Maximum load current: 80 mA; Internal voltage drop: 1 V or less (with load current of 80 mA); Maximum applied voltage: 30 V, 2 outputs PNP open collector: Maximum load current: 80 mA; Internal voltage drop: 1.5 V or less (with load current of 80 mA); 2 outputs

Accumulated pulse output NPN or PNP open collector (same as switch output)

Status LED’s Lights up when output is ON, OUT1: Green; OUT2: Red

Response time 1 sec. or less

Hysteresis Hysteresis mode: Variable (can be set from 0); Window comparator mode (Note 6): 3-digit fixed

Power supply voltage 12 to 24 VDC ±10%

Enclosure IP65

Operating temperature range 0 to 50 °C

Withstand voltage 1000 VAC for 1 minute between terminals and housing

Insulation resistance 50 MΩ or more (500 VDC measured via megohmmeter) between terminals and housing

Noise resistance 1000 Vp-p, Pulse width 1 μs, Rise time 1 ns

Note 1) In case of PF2W711, ±3% of F.S. or less (15 °C to 35 °C, 25 °C reference).

Note 2) Without lead wire.

Note 3) For digital flow switch with unit switching function. (Fixed SI unit [L/min or L] will be set for switch type without the unit switching function.)

Note 4) Accumulated flow rate is reset when the power supply turns OFF. Switch output and accumulated pulse output can be selected during initial setting.

Note 5) Without lead wire

Note 6) Window comparator mode — Since hysteresis will reach 3 digits, keep P_1 and P_2 or n_1 and n_2 apart by 7 digits or more.

In case of output OUT2, n_1, 2 to be n_3, 4 and P_1, 2 to be P_3, 4.

Note 7) This product conforms to the CE marking.
How to Order

Remote Type Sensor Unit

PF2W5
20 - **03** - **C**

Option (Only for output specifications “1”)
(Refer to page 322.)

- Nil
- C e-con connector (1 pc.)

The cable and connector are shipped unassembled.

Thread type

- Nil
- C e-con connector (1 pc.)

Lead wire (Refer to page 322.)

- Nil Lead wire with M12 connector (3 m)
- N Without lead wire

Output specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Specification</th>
<th>Applicable monitor unit (monitor) model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil</td>
<td>Output for monitor unit</td>
<td>Series PF2W300</td>
</tr>
<tr>
<td>1</td>
<td>Output for monitor unit + Analog output (1 to 5 V)</td>
<td>Series PF2W200/300</td>
</tr>
<tr>
<td>2</td>
<td>Output for monitor unit + Analog output (4 to 20 mA)</td>
<td>Series PF2W300</td>
</tr>
</tbody>
</table>

Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>PF2W504</th>
<th>PF2W520</th>
<th>PF2W540</th>
<th>PF2W511</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured fluid</td>
<td>Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detection type</td>
<td>Karman vortex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated flow range</td>
<td>0 to 4 L/min</td>
<td>2 to 16 L/min</td>
<td>5 to 40 L/min</td>
<td>10 to 100 L/min</td>
</tr>
<tr>
<td>Operating pressure range</td>
<td>0 to 1 MPa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Withstand pressure</td>
<td>1.5 MPa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating fluid temperature</td>
<td>0 to 50°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy (Note 1)</td>
<td>±5% F.S.</td>
<td>±5% F.S.</td>
<td>±3% F.S.</td>
<td>±3% F.S.</td>
</tr>
<tr>
<td>Repeatability (Note 1)</td>
<td>±3% F.S.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature characteristics</td>
<td>±2% F.S. (15 to 35°C, 25°C reference), ±3% F.S. (0 to 50°C, 25°C reference)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output for display unit</td>
<td>Pulse output, N channel, open drain, output for monitor unit PF2W300. (Specifications: Maximum load current of 10 mA; Maximum applied voltage of 30 V)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Analog output** | Voltage output 1 to 5 V
Accuracy: ±5% F.S., Min. load impedance: 100 kΩ (Output impedance: 1 kΩ) | Current output 4 to 20 mA
Accuracy: ±5% F.S., Max. load impedance: 300 Ω or less (at 12 VDC), 600 Ω or less (at 24 VDC) | | |
| **Power supply voltage** | 12 to 24 VDC ±10% | | | |
| **Current consumption (No load)** | 20 mA or less | | | |
| **Enclosure** | IP65 | | | |
| **Operating temperature range** | Operating: 0 to 50°C, Stored: −25 to 85°C (with no freezing and condensation) | | | |
| **Withstand voltage** | 1000 VAC for 1 minute between terminals and housing | | | |
| **Insulation resistance** | 50 MΩ or more (500 VDC measured via megohmmeter) between terminals and housing | | | |
| **Noise resistance** | 1000 Vp-p, Pulse width 1 μs, Rise time 1 ns | | | |
| **Weight** (Note 3) | 410 g | 470 g | 650 g | 1,100 g |
| **Port size (Rc, NPT, G)** | 3/8 | 3/8, 1/2 | 1/2, 3/4 | 3/4, 1 |

Note 1) The system accuracy when combined with PF2W200/230/300.
Note 2) Output system can be selected during initial setting.
Note 3) Without lead wire. (Add 20 g for the types of analog output whether voltage or current output selected.)
Note 4) The sensor unit is conforms to the CE marking.
Specifications

Model

<table>
<thead>
<tr>
<th>Flow rate measurement range Note 1</th>
<th>PF2W300/301</th>
<th>PF2W330/331</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.35 to 4.5 L/min</td>
<td>1.7 to 17.0 L/min</td>
<td>3.5 to 45 L/min</td>
</tr>
<tr>
<td>1.7 to 17.0 L/min</td>
<td>3.5 to 45 L/min</td>
<td>7 to 110 L/min</td>
</tr>
<tr>
<td>3.5 to 45 L/min</td>
<td>7 to 110 L/min</td>
<td>7 to 110 L/min</td>
</tr>
<tr>
<td>Minimum set unit Note 1</td>
<td>0.05 L/min</td>
<td>0.1 L/min</td>
</tr>
<tr>
<td>Accumulated pulse flow rate</td>
<td>0.05 L/min</td>
<td>0.1 L/min</td>
</tr>
<tr>
<td>start value (Pulse width: 50 ms) Note 1</td>
<td>0.5 L/min</td>
<td>0.5 L/min</td>
</tr>
</tbody>
</table>

Output specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Flow rate range</th>
<th>Type of sensor unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5 to 4 L/min</td>
<td>PF2W304</td>
</tr>
<tr>
<td>2</td>
<td>2 to 16 L/min</td>
<td>PF2W320</td>
</tr>
<tr>
<td>5</td>
<td>5 to 40 L/min</td>
<td>PF2W340</td>
</tr>
<tr>
<td>10</td>
<td>10 to 100 L/min</td>
<td>PF2W351</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output specifications</th>
<th>NPN open collector (PF2W300, PF2W330)</th>
<th>PNP open collector (PF2W301, PF2W331)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum load current</td>
<td>80 mA</td>
<td>80 mA</td>
</tr>
<tr>
<td>Internal voltage drop</td>
<td>1 V or less, with load current of 80 mA</td>
<td>1.5 V or less, with load current of 80 mA</td>
</tr>
<tr>
<td>Maximum applied voltage</td>
<td>30 V</td>
<td>30 V</td>
</tr>
<tr>
<td>Number of outputs</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Switch output</th>
<th>NPN or PNP open collector (same as switch output)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosure</td>
<td>IP40</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>Operating: 0 to 50°C, Stored: -25 to 85°C (no freezing and condensation)</td>
</tr>
<tr>
<td>Withstand voltage</td>
<td>1000 VAC for 1 minute between terminals and housing</td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>500 kΩ or more (500 VDC measured via megohmmeter) between terminals and housing</td>
</tr>
<tr>
<td>Noise resistance</td>
<td>1000 Vp-p, Pulse width 1 μs, Rise time 1 ns</td>
</tr>
<tr>
<td>Indicator light</td>
<td>3-digit, 7-segment LED</td>
</tr>
<tr>
<td>Status LED’s</td>
<td>Lights up when output is ON, OUT1: Green; OUT2: Red</td>
</tr>
<tr>
<td>Power supply voltage</td>
<td>12 to 24 VDC ±10%</td>
</tr>
<tr>
<td>Response time</td>
<td>1 sec. or less</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>Hysteresis mode: Variable (can be set from 0) Window comparator mode: 3-digit fixed Note 6</td>
</tr>
</tbody>
</table>

Note 1) Values vary depending on each set flow rate range.
Note 2) For digital flow switch with unit switching function. (Fixed SI unit [L/min or L] will be set for switch types without the unit switching function.)
Note 3) Accumulated flow rate is reset when the power supply turns OFF.
Note 4) The system accuracy when combined with PF2W5/L52408/L52408.
Note 5) Switch output and accumulated pulse output can be selected during initial setting.
Note 6) Window comparator mode — Since hysteresis (H) will reach 3 digits, keep P.1 and P.2 or n.1 and n.2 apart by 7 digits or more. (In case of output OUT2, n.1, 2 to be n.3, 4 and P.1, 2 to be P.3, 4.)
Note 7) The monitor unit conforms to the CE marking.
How to Order

4-channel Flow Monitor
Remote Type
Monitor Unit

Accessory/Power supply output cable (2 m)

Output specifications
- Option 1 (Refer to page 322.)
 - Nil
 - None
- Option 2 (Refer to page 322.)
 - Nil
 - None

Unit specifications
- Nil
- With unit switching function
- Fixed SI unit

Output specifications
- NPN 4 outputs
- PNP 4 outputs

Connectable remote type sensor unit is PF2W5.□-□-1 (with analog output 1 to 5 V).

Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>PF2W20/201</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicable flow rate sensor</td>
<td>PF2W504/504T-□-1</td>
</tr>
<tr>
<td>Flow rate measurement range (Note 1)</td>
<td>0.35 to 4.50 L/min</td>
</tr>
<tr>
<td>Set flow rate range (Note 1)</td>
<td>0.35 to 4.50 L/min</td>
</tr>
<tr>
<td>Minimum set unit (Note 1)</td>
<td>0.05 L/min</td>
</tr>
<tr>
<td>Accumulated flow range (Note 1)</td>
<td>0 to 999999 L</td>
</tr>
<tr>
<td>Power supply voltage</td>
<td>24 VDC ±10% (With power supply polarity protection)</td>
</tr>
<tr>
<td>Current consumption</td>
<td>55 mA or less (Note including the current consumption of the sensor)</td>
</tr>
<tr>
<td>Power supply current for sensor</td>
<td>Max. 110 mA (However, the total current for the 4 inputs is 440 mA maximum or less.)</td>
</tr>
<tr>
<td>Sensor input</td>
<td>1 to 5 VDC (Input impedance: Approx. 800KΩ)</td>
</tr>
</tbody>
</table>

No. of inputs
- 4 inputs

Input protection
- Excess voltage protection

Switch output (Real-time switch output, accumulated switch output)
- NPN open collector (PF2W200)
- Maximum load current: 80 mA
- Internal voltage drop: 1 V or less (with load current of 80 mA)
- Maximum applied voltage: 30 V
- PNP open collector (PF2W201)
- Maximum load current: 80 mA
- Internal voltage drop: 1 V or less (with load current of 80 mA)

Accumulated pulse output
- NPN open collector or PNP open collector (same as switch output)

No. of outputs
- 4 outputs (1 output per 1 sensor input)

Output protection
- Short circuit protection

Hysteresis
- Hysteresis mode: Variable (can be set from 0), Window comparator mode: Fixed (3-digits)

Response time (Note 4)
- 1s or less

Accuracy (Note 4)
- ±5% F.S.

Repeatability (Note 4)
- ±5% F.S.

Temperature characteristics
- ±2% F.S. (0 to 30°C, 25°C reference)

Display method
- For measured value display: 4-digits, 7-segment LED
- For channel display: 1-digit, 7-segment LED

Status LED’s
- Illuminates when output is ON: OUT1: Red

Enclosure
- IP65 for the front face only, and IP40 for the remaining parts.

Operating temperature range
- Operating: 0 to 50°C
- Stored: −10 to 60°C (with no freezing and condensation)

Operating humidity range
- Operating or Stored: 35 to 85%RH (with no condensation)

Connection
- Power supply/Output connection: 8P connector
- Sensor connection: 4P connector

Material
- Housing: PBT, Monitor: PET, Backside rubber: CR

Weight
- 60 g (Except for any accessories that are shipped together)

Note 1) Fixed SI unit [L/min or L] will be set for switch types without the unit switching function. (*-M* is suffixed at the end of part number.) Accumulated flow is reset when the power supply turns OFF.

Note 2) Under the new Measurement Act, devices with unit switching functions cannot be used inside Japan.

Note 3) Fixed units: Instantaneous flow rate: L/min
Accumulated flow: L

Note 4) The system accuracy when combined with applicable flow sensor.

Note 5) This product conforms to the CE marking.
Series PF2W

Flow Characteristics (Pressure Loss)

Wetted Parts Construction/Sensor Unit

Parts list

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Attachment</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>2</td>
<td>Seal</td>
<td>NBR</td>
</tr>
<tr>
<td>3</td>
<td>Body</td>
<td>PPS</td>
</tr>
<tr>
<td>4</td>
<td>Sensor</td>
<td>PPS</td>
</tr>
</tbody>
</table>
Dimensions: Integrated Display Type For Water

PF2W704, 720

PF2W740

Internal Circuits and Wiring Examples

- **NPN (2 outputs)**
 - Brown DC(+)
 - Black OUT1
 - White OUT2
 - Blue DC(–)
 - 12 to 24 VDC

- **PNP (2 outputs)**
 - Brown DC(+)
 - Black OUT1
 - White OUT2
 - Blue DC(–)
 - 12 to 24 VDC

Connector pin numbers

<table>
<thead>
<tr>
<th>Pin no.</th>
<th>Pin description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DC(+)</td>
</tr>
<tr>
<td>2</td>
<td>OUT2</td>
</tr>
<tr>
<td>3</td>
<td>DC(–)</td>
</tr>
<tr>
<td>4</td>
<td>OUT1</td>
</tr>
</tbody>
</table>

Model | Dimension | L | Dimension
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PF2W704</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PF2W720</td>
<td>106</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flow direction

- Series PF2W
- For Water
- Digital Flow Switch

Alphabetical Index

- Static Electricity
- Reduced-wiring
- Fieldbus System
- Position Detection
- Flow Sensor
- Pressure Control
- Pressure Sensor
- Flow Sensor
- Length Measuring/Counter
- Static Electricity
- Flow Switch
- Fieldbus System

Internal Circuits and Wiring Examples

- **NPN (2 outputs)**
 - Brown DC(+)
 - Black OUT1
 - White OUT2
 - Blue DC(–)
 - 12 to 24 VDC

- **PNP (2 outputs)**
 - Brown DC(+)
 - Black OUT1
 - White OUT2
 - Blue DC(–)
 - 12 to 24 VDC

Connector pin numbers

<table>
<thead>
<tr>
<th>Pin no.</th>
<th>Pin description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DC(+)</td>
</tr>
<tr>
<td>2</td>
<td>OUT2</td>
</tr>
<tr>
<td>3</td>
<td>DC(–)</td>
</tr>
<tr>
<td>4</td>
<td>OUT1</td>
</tr>
</tbody>
</table>

Model | Dimension | L | Dimension
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PF2W704</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PF2W720</td>
<td>106</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Series PF2W

Dimensions: Integrated Display Type For Water

PF2W711

Flow direction

2 x Port size

4 x Ø5.5

70 58 46 36

46 60 (42.2)
Dimensions: Remote Type Sensor Unit

PF2W504, 520-[N]-

L

B

40
50

2 x ø4.5

60
23
1.6

48.2

2 x Port size

A

Flow direction

Model L dimension
PF2W504 100
PF2W520 106

PF2W540-[N]-

B

23
1.6

48.2

2 x Port size

A

Flow direction

Internal Circuits and Wiring Examples

-1

Analog voltage output

Sensor
Monitor

Switch output

Output specifications

Output for monitor unit only
Output for monitor unit + Analog output

Output specifications

A (mm)

B (mm)

42 62
52 72

Output specifications

A (mm)

B (mm)

42 62
52 72

Wiring

Main Circuit

Brown (1) DC(+)
White (2) NC/Analog output
Blue (3) DC(–)

Black (4) OUT (Output for monitor unit)

Black DC(+)
Brown DC(+)
Blue DC(–)
White Analog output

Pin no. Pin description
1 DC(+)
2 NC/Analog output
3 DC(–)
4 OUT

Use this sensor by connecting it to a SMC remote type display unit, Series PF2W2/L52408/L52408.

For Water
Digital Flow Switch
Series PF2W
Series PF2W

Dimensions: Remote Type Sensor Unit For Water

PF2W511-[□(N)-□]

Output specifications

<table>
<thead>
<tr>
<th>Output for monitor unit only</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Output for monitor unit + Analog output</td>
<td>73</td>
<td>87</td>
</tr>
</tbody>
</table>

Analog output

1 to 5 VDC

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Min. rated flow rate value [L/min]</th>
<th>Max. rated flow rate value [L/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF2W504-[□]-1</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>PF2W520-[□]-1</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>PF2W540-[□]-1</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>PF2W511-[□]-1</td>
<td>10</td>
<td>100</td>
</tr>
</tbody>
</table>

4 to 20 mA DC

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Min. rated flow rate value [L/min]</th>
<th>Max. rated flow rate value [L/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF2W504-[□]-2</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>PF2W520-[□]-2</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>PF2W540-[□]-2</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>PF2W511-[□]-2</td>
<td>10</td>
<td>100</td>
</tr>
</tbody>
</table>
PF2W3□□-A
Panel mount adapter type

Internal Circuits and Wiring Examples

-0 NPN (2 outputs)

-1 PNP (2 outputs)

Panel fitting dimensions

Note) Decide the length of A taking into account the size of terminal you use.
* The applicable panel thickness is 1 to 3.2 mm.
 Corner: R3.5 or less
Series PF2W

Dimensions: Remote Type Monitor Unit **For Water** (4-channel Flow Monitor)

PF2W200, 201

Front protective cover + Panel mount adapter

Panel fitting dimensions

Applicable panel thickness: 0.5 to 8 mm
Dimensions: Remote Type Monitor Unit
For Water
(4-channel Flow Monitor)

Cable Specifications

<table>
<thead>
<tr>
<th>No. of cable wire</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal cross-sectional area</td>
<td>0.15 mm²</td>
</tr>
<tr>
<td>Dimension</td>
<td>Approx. 0.5 mm</td>
</tr>
<tr>
<td>Insulator Dimension</td>
<td>Approx. 0.9 mm</td>
</tr>
<tr>
<td>Brown, White, Blue, Black, Gray, Red, Green, Yellow</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>Heat-resistant polyethylene</td>
</tr>
<tr>
<td>O.D.</td>
<td>4.8 mm</td>
</tr>
</tbody>
</table>

Internal Circuits and Wiring Examples

PF2W200
NPN (4 outputs)

PF2W201
PNP (4 outputs)
Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>PF2W704T</th>
<th>PF2W720T</th>
<th>PF2W740T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured fluid</td>
<td>Water, Mixture of water (50%) and ethylene glycol (50%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow rate measurement range</td>
<td>0.35 to 4.5 L/min</td>
<td>1.7 to 17.0 L/min</td>
<td>3.5 to 45 L/min</td>
</tr>
<tr>
<td>Set flow rate range</td>
<td>0.35 to 4.5 L/min</td>
<td>1.7 to 17.0 L/min</td>
<td>3.5 to 45 L/min</td>
</tr>
<tr>
<td>Rated flow range</td>
<td>0.5 to 4 L/min</td>
<td>2 to 16 L/min</td>
<td>5 to 40 L/min</td>
</tr>
<tr>
<td>Minimum set unit</td>
<td>0.05 L/min</td>
<td>0.1 L/min</td>
<td>0.5 L/min</td>
</tr>
<tr>
<td>Accumulated pulse flow rate exchange value (Pulse width: 50 ms)</td>
<td>0.05 L/pulse</td>
<td>0.1 L/pulse</td>
<td>0.5 L/pulse</td>
</tr>
<tr>
<td>Operating fluid temperature</td>
<td>0 to 90°C (without cavitation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>±5% F.S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeatability</td>
<td>±3% F.S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature characteristics Note 1</td>
<td>±5% F.S. (0 to 90°C, 25°C reference)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current consumption (No load)</td>
<td>70 mA or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight Note 2</td>
<td>710 g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port size (Rc, NPT, G)</td>
<td>3/8, 1/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indicator light</td>
<td>Karman vortex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display units Note 3</td>
<td>Instantaneous flow rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L/min, gal(US)/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accumulated flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L, gal(US)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating pressure range</td>
<td>0 to 1 MPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Withstand pressure</td>
<td>1.5 MPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accumulated flow range Note 4</td>
<td>0 to 999999 L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch output</td>
<td>NPN open collector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum load current</td>
<td>80 mA; Internal voltage drop: 1 V or less (with load current of 80 mA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum applied voltage</td>
<td>30 V; 2 outputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNP open collector</td>
<td>Maximum load current: 80 mA; Internal voltage drop: 1.5 V or less (with load current of 80 mA); 2 outputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accumulated pulse output</td>
<td>NPN or PNP open collector (same as switch output)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status LED's</td>
<td>Lights up when output is turned ON: OUT1: Green; OUT2: Red</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response time</td>
<td>1 sec. or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply voltage</td>
<td>12 to 24 VDC ±10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hysteresis mode</td>
<td>Variable (can be set from 0); Window comparator mode (Note 6); 3-digit fixed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>Operating: 0 to 50°C, Stored: –25 to 85°C (with no freezing and condensation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Withstand voltage</td>
<td>1000 VAC for 1 minute between terminals and housing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>50 MΩ or more (500 VDC measured via megohmmeter) between terminals and housing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise resistance</td>
<td>1000 Vp-p, Pulse width 1 μs, Rise time 1 ns</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1) ±5% F.S. (0 to 50°C, 25°C reference), ±3% F.S. (15 to 35°C, 25°C reference)

Note 2) Without lead wire.

Note 3) For digital flow switch with unit switching function. Fixed SI unit [L/min or L] will be set for switch type without the unit switching function.

Note 4) Accumulated flow rate is reset when the power supply turns OFF.

Note 5) Switch output and accumulated pulse output can be selected during initial setting.

Note 6) Window comparator mode — Since hysteresis will reach 3 digits, keep P_1 and P_2 or n_1 and n_2 apart by 7 digits or more.

(In case of output OUT2, n_1, 2 to be n_3, 4 and P_1, 2 to be P_3, 4.)

Note 7) The flow switch conforms to the CE marking.
How to Order

Remote Type Sensor Unit: **PF2W5**

- **Flow rate range**: 04 [0.5 to 4 L/min], 20 [2 to 16 L/min], 40 [5 to 40 L/min]
- **Temperature range**: T [0 to 90°C]
- **Thread type**: Nil, Rc, N, NPT, G
- **Port size**: 03, 04, 06

Option (Only for output specifications “1”)
- Nil, C (e-con connector (1 pc.))
- N (lead wire with M12 connector (3 m))

Lead wire (Refer to page 322.)
- Nil, C (None)
- N (without lead wire)

Note 1: The system accuracy when combined with PF2W2.

Note 2: Output system can be selected during initial setting.

Note 3: Without lead wire. (Add 20g for the types of analog output whether voltage or current output selected.)

Note 4: The sensor unit conforms to the CE marking.

Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>PF2W504T</th>
<th>PF2W520T</th>
<th>PF2W540T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured fluid</td>
<td>Water, Mixture of water (50%) and ethylene glycol (50%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detection type</td>
<td>Karman vortex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated flow range</td>
<td>0.5 to 4 L/min</td>
<td>2 to 16 L/min</td>
<td>5 to 40 L/min</td>
</tr>
<tr>
<td>Operating pressure range</td>
<td>0 to 1 MPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Withstand pressure</td>
<td>1.5 MPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating fluid temperature</td>
<td>0 to 90°C (with no cavitation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy (Note 1)</td>
<td>±2% F.S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeatability (Note 1)</td>
<td>±2% F.S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature characteristics</td>
<td>±2% F.S. (15 to 35°C, 25°C reference), ±3% F.S. (0 to 50°C, 25°C reference)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output for monitor unit
- Voltage output 1 to 5 V
 - Accuracy: ±5% F.S., Min. load impedance: 100 kΩ or more (Output impedance: 1 kΩ)
- Current output 4 to 20 mA
 - Accuracy: ±5% F.S., Max. load impedance: 300 Ω or less (at 12 VDC), 600 Ω or less (at 24 VDC)

Analog output
- Voltage output 1 to 5 V
 - Accuracy: ±5% F.S., Min. load impedance: 100 kΩ or more (Output impedance: 1 kΩ)
- Current output 4 to 20 mA
 - Accuracy: ±5% F.S., Max. load impedance: 300 Ω or less (at 12 VDC), 600 Ω or less (at 24 VDC)

Power supply voltage
- 12 to 24 VDC ±10%

Current consumption (No load)
- 20 mA or less

Enclosure
- IP65

Operating temperature range
- Operating: 0 to 50°C, Stored: –25 to 85°C (with no freezing and condensation)

Withstand voltage
- 1000 VAC for 1 minute between terminals and housing

Insulation resistance
- 50 MΩ or more (500 VDC measured via megohmmeter) between terminals and housing

Noise resistance
- 1000 Vp-p, Pulse width 1μs, Rise time 1μs

Weight (Note 3)
- 660 g

Port size
- 3/8, 3/8, 1/2, 1/2, 3/4

Monitor units are the same as those of remote type digital flow switch for water (Series PF2W300/PF2W200). Refer to pages 304 and 305 for details.
Series PF2W

Flow Characteristics (Pressure Loss)

PF2W704T, 504T

<table>
<thead>
<tr>
<th>Flow rate (L/min)</th>
<th>Pressure loss (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td>0.5</td>
<td>0.010</td>
</tr>
<tr>
<td>1.0</td>
<td>0.015</td>
</tr>
<tr>
<td>1.5</td>
<td>0.020</td>
</tr>
<tr>
<td>2.0</td>
<td>0.025</td>
</tr>
<tr>
<td>2.5</td>
<td>0.030</td>
</tr>
<tr>
<td>3.0</td>
<td>0.035</td>
</tr>
<tr>
<td>3.5</td>
<td>0.040</td>
</tr>
<tr>
<td>4.0</td>
<td>0.045</td>
</tr>
</tbody>
</table>

PF2W720T, 520T

<table>
<thead>
<tr>
<th>Flow rate (L/min)</th>
<th>Pressure loss (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>0.010</td>
</tr>
<tr>
<td>4</td>
<td>0.015</td>
</tr>
<tr>
<td>6</td>
<td>0.020</td>
</tr>
<tr>
<td>8</td>
<td>0.025</td>
</tr>
<tr>
<td>10</td>
<td>0.030</td>
</tr>
<tr>
<td>12</td>
<td>0.035</td>
</tr>
<tr>
<td>14</td>
<td>0.040</td>
</tr>
<tr>
<td>16</td>
<td>0.045</td>
</tr>
</tbody>
</table>

PF2W740T, 540T

<table>
<thead>
<tr>
<th>Flow rate (L/min)</th>
<th>Pressure loss (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>0.010</td>
</tr>
<tr>
<td>10</td>
<td>0.015</td>
</tr>
<tr>
<td>15</td>
<td>0.020</td>
</tr>
<tr>
<td>20</td>
<td>0.025</td>
</tr>
<tr>
<td>25</td>
<td>0.030</td>
</tr>
<tr>
<td>30</td>
<td>0.035</td>
</tr>
<tr>
<td>35</td>
<td>0.040</td>
</tr>
<tr>
<td>40</td>
<td>0.045</td>
</tr>
</tbody>
</table>

Wetted Parts Construction/Sensor Unit

<table>
<thead>
<tr>
<th>Parts list</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Flow direction
Dimensions: Integrated Display Type For Water

PF2W704T, 720T, 740T

Internal Circuits and Wiring Examples

-27

NPN (2 outputs)

Main circuit
Brown DC(+)
Black OUT1
White OUT2
Blue DC(–)

Load
Output load
12 to 24 VDC

-67

PNP (2 outputs)

Main circuit
Brown DC(+)
Black OUT1
White OUT2
Blue DC(–)

Load
Output load
12 to 24 VDC

Connector pin numbers

<table>
<thead>
<tr>
<th>Pin no.</th>
<th>Pin description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DC(+)</td>
</tr>
<tr>
<td>2</td>
<td>OUT2</td>
</tr>
<tr>
<td>3</td>
<td>DC(–)</td>
</tr>
<tr>
<td>4</td>
<td>OUT1</td>
</tr>
</tbody>
</table>

Flow direction
Series PF2W

Dimensions: Remote Type Sensor Unit For Water

PF2W504T, 520T, 540T-□(N)

Internal Circuits and Wiring Examples

-1/2 Analog current output

-1 Analog voltage output

Wiring

Connector pin numbers

Output specifications

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>72</td>
</tr>
<tr>
<td>62</td>
<td>82</td>
</tr>
</tbody>
</table>

Min. rated flow rate value [L/min] Max. rated flow rate value [L/min] Instantaneous flow rate [L/min]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PF2W504T-□-T-1</td>
<td>0.5</td>
<td>4</td>
<td>PF2W504T-□-2</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>PF2W520T-□-T-1</td>
<td>2</td>
<td>16</td>
<td>PF2W520T-□-2</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>PF2W540T-□-T-1</td>
<td>5</td>
<td>40</td>
<td>PF2W540T-□-2</td>
<td>5</td>
<td>40</td>
</tr>
</tbody>
</table>

Use this sensor by connecting it to a SMC remote type display unit, Series PF2W3□□□.
Description

Integrated Display Type

PF2A703H, 706H, 712H

1. **UP button** (▲ button)
 Use to change the mode or to increase the set value.

2. **SET button** (▼ button)
 Use this button to set the value or the set mode.

3. **DOWN button** (▼ button)
 Use to change the mode or decrease the set value.

4. **RESET button** (▲ + ▼ button)
 If the UP and DOWN buttons are pressed simultaneously, the RESET function will activate. In case of an emergency, please clear the display. The display of the accumulated flow will be reset to zero.

Remote Type/Monitor Unit

PF2A300, 301, 310, 311

PF2W300, 301, 330, 331

1. **LED display/Red**
 Displays the measured flow rate, each setting condition, and error code.

2. **Indicator (PF2A7□□, PF2A3□□ for air only)**
 Illuminates when the normal condition (nor) is selected.

3. **Output (OUT1) display/Green**
 Displays the output condition of OUT1. Lights up when output is turned ON.

4. **Output (OUT2) display/Red**
 Displays the output condition of OUT2. Lights up when output is turned ON.

5. **UP button** (▲ button)
 Use to change the mode or to increase the set value.

6. **SET button** (▼ button)
 Use this button to set the value or the set mode.

7. **DOWN button** (▼ button)
 Use to change the mode or decrease the set value.

Integrated Display Type

PF2A710, 750, 711, 721, 751

PF2W704(T), 720(T), 740(T), 711

整齐 Display Type

PF2A703H, 706H, 712H

Remote Type/Monitor Unit

PF2A300, 301, 310, 311

PF2W300, 301, 330, 331

4-channel Flow Monitor (Remote type/Monitor unit)

PF2A200, 201

PF2W200, 201

4-channel Flow Monitor (Remote type/Monitor unit)

PF2A200, 201

PF2W200, 201

Series PF2A/PF2W

For Air/Water

Digital Flow Switch
Flow rate measurement selection
Instantaneous flow rate and accumulated flow rate can be selected. A flow rate of up to 999999 can be accumulated. The accumulated flow rate is reset when the power supply turns OFF. (With PF2A7□□H, it is possible to select a holding function.)

Unit switching

For Air

<table>
<thead>
<tr>
<th>Display</th>
<th>Instantaneous flow rate</th>
<th>Accumulated flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.1</td>
<td>L/min</td>
<td>L</td>
</tr>
<tr>
<td>U.2</td>
<td>CFM x 10⁻², CFM x 10⁻¹</td>
<td>ft³ x 10⁻¹</td>
</tr>
</tbody>
</table>

High Flow Rate Type (For Air)

<table>
<thead>
<tr>
<th>Display</th>
<th>Instantaneous flow rate</th>
<th>Accumulated flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.1</td>
<td>L/min</td>
<td>L, m³, m³ x 10³</td>
</tr>
<tr>
<td>U.2</td>
<td>CFM</td>
<td>ft³, ft³ x 10³, ft³ x 10⁶</td>
</tr>
</tbody>
</table>

For Water/High Temperature Fluid Type (For Water)

<table>
<thead>
<tr>
<th>Display</th>
<th>Instantaneous flow rate</th>
<th>Accumulated flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.1</td>
<td>L/min</td>
<td>L</td>
</tr>
<tr>
<td>U.2</td>
<td>GPM</td>
<td>gal (US)</td>
</tr>
</tbody>
</table>

Note: Fixed SI unit (L/min, or L, m³, m³ x 10³) will be set for the type without the display unit switching function.

Flow rate conversion
Normal condition: 0°C, 101.3 kPa, dry air
Standard condition: 20°C, 101.3 kPa, 65%RH (ANR) Switchable between these conditions.

Flow rate measuring unit confirmation
This function allows for the confirmation of the accumulated flow rate when instantaneous flow rate is selected and to confirm the instantaneous flow rate when accumulated flow rate is selected.

Keylock
This function prevents accidental operations such as changing the set value.

Accumulation clearance
This function clears the accumulated value.

Initialization of setting (only for Series PF2A7□□□H)
This function restores the setting to the original state, just as it had been shipped from the factory.

Output types
Real-time switch output, accumulated switch output, or accumulated pulse output can be selected as an output type.

Real-time switch output

Accumulated switch output

Accumulated pulse output

Note 1) For a digital flow switch with an unit switching function. (Fixed SI unit (L/min, or L, m³, or m³ x 10³) will be set for switch types without an unit switching function.) Refer to the specifications of the display unit for the flow rate value per pulse.
Functions

Copy function (PF2□200, 201 only)
Information to be copied is:
1. Flow rate range
2. Display mode
3. Display unit (Only available when the unit specification is nil.)
4. Output method
5. Output mode
6. Flow rate display unit (available with PF2A20□ only)
7. Flow rate value

Peak hold, Bottom hold display function (PF2□200, 201 only)
The maximum or minimum value can be held in the case where the instantaneous flow rate display mode is selected during the initial setting. The hold value is reset when the power supply turns OFF or the hold is released.

Error correction

<table>
<thead>
<tr>
<th>LED display</th>
<th>Contents</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Er1</td>
<td>A current of more than 80 mA is flowing to OUT1.</td>
<td>Check the load and the wiring for OUT1.</td>
</tr>
<tr>
<td>Er2</td>
<td>A current of more than 80 mA is flowing to OUT2.</td>
<td>Check the load and the wiring for OUT2.</td>
</tr>
<tr>
<td>Err3</td>
<td>The set data has changed for some reason.</td>
<td>Perform the RESET operation, and reset all the data again.</td>
</tr>
<tr>
<td>Err4</td>
<td>The flow rate is over the flow rate measurement range.</td>
<td>Use an adjustment valve, etc. to reduce the flow rate until it is within the flow rate range.</td>
</tr>
</tbody>
</table>

Note 1) Applicable to monitor integrated type and remote type except the PF2□□CA7 series.
Note 2) Applicable to the PF2□□□CA7 series only.

Channel select function (PF2□200, 201 only)
Every pushing the △ button, channel selection “1→2→3→4→1…” is available. The flow rate measurement of each selected channel is shown in the monitor unit.

Channel scan function (PF2□200, 201 only)
Changes displaying the channel shown every about 2 seconds and its detected flow rate.

For PF2A/W200, 201

<table>
<thead>
<tr>
<th>LED display</th>
<th>Contents</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Er1</td>
<td>Over current is flowing to the load of a switch output.</td>
<td>Eliminate the cause of the over current by turning off the power supply, and then turn on it again.</td>
</tr>
<tr>
<td>Er8</td>
<td>Internal data error.</td>
<td>Please contact SMC for investigation.</td>
</tr>
<tr>
<td>Er7</td>
<td>Internal data error.</td>
<td></td>
</tr>
<tr>
<td>Er10</td>
<td>Internal data error.</td>
<td></td>
</tr>
<tr>
<td>Er5</td>
<td>Internal data error.</td>
<td>Turn off the power supply and then turn on it again.</td>
</tr>
<tr>
<td>Er6</td>
<td>Internal data error.</td>
<td></td>
</tr>
<tr>
<td>........</td>
<td>The flow rate is over the flow rate measurement range.</td>
<td>Use an adjustment valve, etc. to reduce the flow rate until it is within the flow rate range.</td>
</tr>
</tbody>
</table>
Series PF2A/PF2W

Option

When only optional parts are required, order with the part numbers listed below.

Lead wire with M12 connector

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Qty.</th>
<th>Lead wire length</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZS-37-A</td>
<td>1</td>
<td>3 m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connector size</th>
<th>Pin no.</th>
<th>Manufacturer</th>
<th>Applicable series</th>
</tr>
</thead>
<tbody>
<tr>
<td>M12</td>
<td>4</td>
<td>Correns Corp.</td>
<td>VA-4D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OMRON Corp.</td>
<td>XS2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yamatake Corp.</td>
<td>PAS-4I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HIROSE ELECTRIC CO., LTD.</td>
<td>HR24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDK Ltd.</td>
<td>CM01-8DP4S</td>
</tr>
</tbody>
</table>

Cable Specifications

<table>
<thead>
<tr>
<th>No. of cable wire</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductor</td>
<td>Nominal cross-sectional area: AWG23</td>
</tr>
<tr>
<td></td>
<td>Dimension: 0.72 mm</td>
</tr>
<tr>
<td>Insulator</td>
<td>Dimension: 1.14 mm Brown, White, Blue, Black</td>
</tr>
<tr>
<td>Sheath</td>
<td>Material: Heat-resistant and oil-resistant lead-free PVC</td>
</tr>
<tr>
<td></td>
<td>O.D.: 4.00 mm</td>
</tr>
</tbody>
</table>

Panel mounting

<table>
<thead>
<tr>
<th>Pin no.</th>
<th>Description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZS-22-E</td>
<td>Panel mount adapter A, B</td>
<td>With mounting bracket</td>
</tr>
</tbody>
</table>

Panel mount adapter A

Panel mount adapter B

Mounting bracket (accessory)

Waterproof seal (accessory)

Panel mount adapter

Panel mount adapter B

Mounting screw (M3 x 8 L) (accessory)

Manufacturer Model

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumitomo 3M Limited</td>
<td>37104-3122-000FL</td>
</tr>
<tr>
<td>Tyco Electronics Japan G.K.</td>
<td>2-1473562-4</td>
</tr>
<tr>
<td>OMRON Corp.</td>
<td>XN2A-1430</td>
</tr>
<tr>
<td>Correns Corp.</td>
<td></td>
</tr>
<tr>
<td>OMRON Corp.</td>
<td></td>
</tr>
<tr>
<td>Yamaha Corp.</td>
<td></td>
</tr>
<tr>
<td>HIROSE ELECTRIC CO., LTD.</td>
<td></td>
</tr>
<tr>
<td>DDK Ltd.</td>
<td></td>
</tr>
</tbody>
</table>

Part no. Description Note

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZS-26-B</td>
<td>Panel mount adapter</td>
<td>With waterproof seal, mounting screw</td>
</tr>
<tr>
<td>ZS-26-C</td>
<td>Front protective cover + Panel mount adapter</td>
<td>With waterproof seal, mounting screw</td>
</tr>
</tbody>
</table>
Related Product
Multi Counter
Series CEU5

How to Order

CEU5

Output transistor mode
- Nill: NPN open collector output
- P: PNP open collector output

Power supply voltage
- Nill: 100 to 240 VAC
- D: 24 VDC

External output
- Nill: RS-232C
- B: RS-232C + BCD

Connection Method

Connection with the Digital Flow Switch (Series PF2)

- Possible to measure accumulated pulse output of a Digital Flow Switch by an unit of 100 L (litter) and 10 ft³ (cube foot) using the pre-scaling function* of the multi counter (When inputting to the multi counter, Up or Down is selected as input method.)
- Possible to take advantage of all CEU5 functions using preset mode and function mode.

* The set value is calculated by selecting manual mode. By multiplication by 4, then, per pulse value is set.

<Connection with other manufacturers’ encoders>
- Possible to switch multi counter side input method to 2-phase or Up/Down.
- Possible to connect to an encoder if the output method is Open Collector.
- When selecting UP or DOWN, phase A to COM input is counted toward addition direction, phase B to COM input is counted toward subtraction direction.

Caution
When connecting the CEU5 with an encoder from another manufacturer, please thoroughly confirm the specification beforehand. Please note that the CEU5 may not count normally depending on the output method, output frequency and connecting cable length, etc. of the encoders.

Regarding connection with scale cylinder, refer to “Stroke Reading Cylinder and Counter Series CE” in the Best Pneumatics No. 3.
Series PF2A/PF2W Specific Product Precautions 1

Be sure to read before handling. Refer to back page 1 for Safety Instructions and “Handling Precautions for SMC Products” (M-E03-3) for Flow Switch Precautions.

Design and Selection

Warning

1. Operate the switch only within the specified voltage.
 Use of the switch outside of the specified voltage range can cause not only a malfunction and damage to the switch, but it can also cause electrical shock and fire.

2. Do not exceed the maximum allowable load specification.
 A load exceeding the maximum load specification can cause damage to the switch.

3. Do not use a load that generates a surge voltage.
 Although the circuit at the output side of the switch is surge-protected, damage may still occur if a voltage surge is applied repeatedly. When a load which generates a surge, such as from a relay or solenoid valve, is directly driven, use a switch with a built-in surge absorbing element.

4. Since the type of fluid varies depending on the product, be sure to verify the specifications.
 The switches do not have an explosion proof rating. To prevent a possible fire hazard, do not use with inflammable gases or fluids.

5. Monitor the internal voltage drop of the switch.
 When operating below the specified voltage, it is possible that the load may be ineffective even though the pressure switch function is normal. Therefore, the formula below should be satisfied after confirming the minimum operating voltage of the load.

 \[
 \text{Supply voltage} \geq \text{Internal voltage drop of switch} + \text{Minimum operating voltage of load}
 \]

 ![Supply Voltage Internal Voltage Drop Minimum Operating Voltage Load Table](image)

 For air

6. Use the switch within the specified flow rate measurement and operating pressure.
 Operating beyond the specified flow rate and operating pressure can damage the switch.

 For water

7. Use the switch within the specified flow rate measurement and operating pressure.
 Operating beyond the specified flow rate and operating pressure can damage the switch. Especially avoid the application of pressure through a water hammer, which is above the specification.

 <Examples of pressure reduction measures>
 a) Use a device such as a water hammer relief valve to slow the valve’s closing speed.
 b) Absorb impact pressure by using an accumulator or elastic piping material such as a rubber hose.
 c) Keep the piping length as short as possible.

8. Design the system, so that the fluid always fills the detection passage.
 Especially for vertical mounting, introduce the fluid from the bottom to the top.

9. Operate within the flow rate measurement range.
 If operated outside of the flow rate measurement range, the Karman vortex will not be generated and normal measurement will not be possible.

10. Sudden increase in flow rate may destroy the flow sensor. Ensure to open/close the flow control valve not to exceed the maximum flow rate measurement values.

Caution

1. Data from the flow switch is stored even after the power supply is turned off.
 The input data is stored in EEPROM so that the data will not be lost after the flow switch is turned off. (The data can be rewritten for up to one million times, and stored for up to 20 years.)

2. Accumulated flow rate is reset when it is turned OFF.
 However, only in the case of the PF2A7□□□H series (for air) it is possible to select a holding function that maintains the accumulated flow rate, even though the power supply is off.

Mounting

Warning

1. Mount the switch using the proper tightening torque.
 When the switch is tightened beyond the specified tightening torque, it may be damaged. On the other hand, tightening below the specified tightening torque may cause the installation screws to loosen during operation.

<table>
<thead>
<tr>
<th>Thread</th>
<th>Tightening torque Nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rc 1/4</td>
<td>7 to 9</td>
</tr>
<tr>
<td>Rc 1/2</td>
<td>12 to 14</td>
</tr>
<tr>
<td>Rc 3/8</td>
<td>22 to 24</td>
</tr>
<tr>
<td>Rc 1/2</td>
<td>28 to 30</td>
</tr>
</tbody>
</table>

2. Apply a wrench only to the metal part of the piping when installing the flow switch onto the system piping.
 Do not apply the wrench to any part other than the piping attachment or the switch may be damaged.

3. Monitor the flow direction of the fluid.
 Install and connect piping so that fluid flows in the direction of the arrow indicated on the body.

4. Remove dirt and dust from inside of the piping by means of air blow, before attaching to the switch.

5. Do not drop or bump.
 Do not drop, bump, or apply excessive impacts (490 m/s²) while handling. Although the external body of the switch (switch case) may not be damaged, the switch inside could be damaged and cause a malfunction.

6. Hold the body of the switch when handling.
 The tensile strength of the cord is 49N and applying a greater pulling force than this can cause a malfunction. When handling, hold the body of the switch.

7. Do not use until you can verify that equipment can operate properly.
 Following mounting, repair, or retrofit, verify correct mounting by conducting suitable function and leakage tests after piping and power connections have been made.

8. Avoid the mounting orientation with the bottom of the body facing up.
 The switch can be mounted in any way such as vertically or horizontally, however, avoid the mounting orientation with the bracket on the bottom of the body facing upward.
Warning

For air

9. Never mount a switch in a place that will be used as a step stool during piping.

Damage may occur if an excessive load is applied to the switch.

10. Be sure to allow straight pipe length that is minimum 8 times the port size upstream and downstream of the switch piping.

When abruptly reducing the size of piping or when there is a restriction such as a valve on the upstream side, the pressure distribution in the piping changes and makes accurate measurement impossible. Therefore, flow restriction measures such as these should be implemented on the downstream side of the switch.

For water

11. Never mount a switch in a place that will be used as a step stool during piping.

Damage may occur if an excessive load is applied to the switch. Especially when the switch supports the piping, do not apply a load of 15N-m or more to the metal part of the switch.

12. Be sure to allow straight pipe length that is minimum 8 times the port size upstream and downstream of the switch piping.

When abruptly reducing the size of piping or when there is a restriction such as a valve on the upstream side, the flow velocity distribution in the piping changes and makes accurate measurement impossible. Therefore, flow restriction measures such as these should be implemented on the downstream side of the switch.

Also, leaving the downstream side open or bringing about excessive flow volume will increase the risk of cavitation and may make accurate measurement impossible. Increasing the fluid pressure is one means of reducing cavitation. Try a procedure such as mounting a throttle on the downstream side of the switch. Check to make sure there is no malfunction before using.

Warning

1. Verify the color and the terminal number when wiring.

Incorrect wiring can cause the switch to be damaged and malfunction. Verify the color and the terminal number in the operation manual when wiring.

2. Avoid repeatedly bending or stretching of the lead wire.

Repeatedly applying bending stress or stretching force to the lead wire will cause it to break.

3. Confirm proper insulation of wiring.

Make sure that there is no faulty wiring insulation (contact with other circuits, ground fault, improper insulation between terminals, etc.). Damage may occur due to excess current flow into a switch.

4. Do not wire in conjunction with power lines or high voltage lines.

Wire separately from power lines and high voltage lines, and avoiding wiring in the same conduit with these lines. Control circuits including switches may malfunction due to noise from these lines.

5. Do not allow a load to short circuit.

Although a switch indicates excess current error if a load is short circuited, all incorrect wiring connections such as power supply polarity cannot be protected. Take precautions to avoid incorrect wiring.

Warning

1. When using a switch for high temperature fluid, the switch itself also becomes hot due to the high temperature fluid. Avoid touching the switch directly as this may cause a burn.

Warning

1. Never use in the presence of explosive gases. The switches do not have an explosion proof rating. Never use in the presence of an explosive gas as this may cause a serious explosion.

2. Mount the switch in a locations where there is no vibration greater than 98 m/s² or impact greater than 490 m/s².

3. Do not use in an area where surges are generated.

When there are units that generate a large amount of surge in the area around a pressure switch, (e.g., solenoid type lifters, high frequency induction furnaces, motors, etc.) this may cause deterioration or damage to the switch's internal circuitry. Avoid sources of surge generation and crossed lines.

4. Switches are not equipped with surge protection against lightning.

The flow switches are CE compliant, however they are not equipped with surge protection against lightning. Lightning surge protection measures should be applied directly to the system components as necessary.

5. Avoid using the switch in an environment where the likelihood of splashing or spraying of liquids exists.

The switches are dustproof and splashproof, however avoid using in an environment where the likelihood of heavy splashing or spraying of liquids exists. Since the monitor unit of the remote type switches featured here is not dust or splashproof, the use in an environment where liquid splashing or spraying exists must be avoided.

6. Use the switch within the specified fluid and ambient temperature range.

The fluid and ambient temperature range is 0° to 50°C. Take measures to prevent the fluid from freezing when it is below 0°C, since this may damage the switch and lead to a malfunction. The installation of an air dryer is recommended for eliminating condensation and moisture. Never use the switch in an environment where there are drastic temperature changes even when these temperatures are within the specification.

7. Use the switch within the specified fluid and ambient temperature range. The fluid and ambient temperatures range for the switch is 0 to 50°C (and 0 to 90°C for high temperature fluid). Take measures to prevent the fluid from freezing when it is below 5°C, since this may cause damage to the switch and lead to a malfunction. Never use the switch in an environment where there are drastic temperature changes even when these temperatures fall within the specified temperature range.
1. Check regulators and flow adjustment valves before introducing the fluid. If pressure or flow rate beyond the specified range are applied to the switch, the sensor unit may be damaged.

2. The fluids that the switch can measure accurately are nitrogen and dry air. Please note that accuracy cannot be guaranteed when other fluids are used.

3. Never use inflammable fluids.

4. Install a filter or mist separator on the upstream side when there is a possibility of condensate and foreign matter being mixed in with the fluid. The rectifying device built into the switch will be clogged up and accurate measurement will no longer be possible.

5. The fluid that the switch can measure accurately is water. Also, combination of equal parts water/ethylene glycol (50/50%) can be used if its temperature is high. Please note that accuracy cannot be guaranteed when other fluids are used.

6. Never use inflammable fluids.

7. Install a filter on the inlet side when there is a possibility of condensation and foreign matter being mixed with the fluid. If foreign matter adheres to the switch's vortex generator or vortex detector, accurate measurement will no longer be possible.

1. After the power is turned on, the switch's output remains off while a message is displayed. Therefore, start the measurement after a value is displayed.

2. Perform settings after stopping control systems. When the switch's initial setting and flow rate setting are performed, output maintains the condition prior to the settings.

3. Do not apply excessive rotational force to the monitor unit. The integrated type display unit can rotate 360°. Rotation is controlled by the stopper; however, the stopper may be damaged if the monitor unit is turned with excessive force.

4. Be certain to turn on the power supply when the flow rate is at zero. Allow an interval of 10 minutes after turning on the power, as there are some changes in the display.

5. Flow rate unit

The switch measures at mass flow rates without being influenced by temperature and pressure. The switches use L/min as the flow rate indicator unit, in which the volumetric flow is substituted for mass flow at 0°C and 101.3 kPa (nor). The volumetric flow rate at 20°C, 101.3 kPa, and 65% RH (ANR) can be displayed with the high flow rate type switches for air.

Contact SMC regarding the specifications for clean environment.

Warning

1. Perform periodical inspections to ensure proper operation of the switch. Unexpected malfunctions may cause a possible danger.

2. Take precautions when using the switch for an interlock circuit. When a pressure switch is used for the interlock circuit, devise a multiple interlock system to prevent trouble or malfunction, and verify the operation of the switch and interlock function on a regular basis.

3. Do not disassemble or perform any conversion work on flow switches.

Warning

1. Check regulators and flow adjustment valves before introducing the fluid. If pressure or flow rate beyond the specified range are applied to the switch, the sensor unit may be damaged.

2. The fluids that the switch can measure accurately are nitrogen and dry air. Please note that accuracy cannot be guaranteed when other fluids are used.

3. Never use inflammable fluids.

4. Install a filter or mist separator on the upstream side when there is a possibility of condensate and foreign matter being mixed in with the fluid. The rectifying device built into the switch will be clogged up and accurate measurement will no longer be possible.

5. The fluid that the switch can measure accurately is water. Also, combination of equal parts water/ethylene glycol (50/50%) can be used if its temperature is high. Please note that accuracy cannot be guaranteed when other fluids are used.

Detection principle of digital flow switch for air

A heated thermistor is installed in the passage, and fluid absorbs heat from the thermistor as it is introduced to the passage. The thermistor's resistance value increases as it loses heat. Since the resistance value increase ratio has a uniform relationship to the flow velocity, the flow velocity can be detected by measuring the resistance value. To further compensate the fluid and ambient temperature, the temperature sensor is also built into the switch to allow stable measurement within the operating temperature range.

Detection principle of digital flow switch for water

When an elongated object (vortex generator) is placed in the flow, reciprocal vortexes are generated on the downstream side. These vortexes are stable under certain conditions, and their frequency is proportional to the flow velocity, resulting the following formula.

\[f = k \times v \]

\(f \): Frequency of vortex \(v \): Flow velocity \(k \): Proportional constant (determined by the vortex generator's dimensions and shape). Therefore, the flow rate can be measured by detecting this frequency.
Set Flow Rate Range and Rated Flow Range

⚠️ Caution

Set the flow rate within the rated flow range.
The set flow rate range is the range of flow rate that can be set on the controller.
The rated flow range is the range that satisfies the sensor's specifications (accuracy, linearity etc.).
It is possible to set a value outside of the rated flow range, however, the specification is not be guaranteed.

<For Air/PF2A>

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Flow rate range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 L/min 10 L/min 50 L/min 100 L/min 200 L/min 500 L/min</td>
</tr>
<tr>
<td>PF2A510</td>
<td>0.5 L/min</td>
</tr>
<tr>
<td>PF2A550</td>
<td>2.5 L/min</td>
</tr>
<tr>
<td>PF2A511</td>
<td>5 L/min</td>
</tr>
<tr>
<td>PF2A521</td>
<td>10 L/min</td>
</tr>
<tr>
<td>PF2A551</td>
<td>25 L/min</td>
</tr>
</tbody>
</table>

<For Water/PF2W>

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Flow rate range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5 L/min 1 L/min 2 L/min 5 L/min 10 L/min 20 L/min 40 L/min 100 L/min</td>
</tr>
<tr>
<td>PF2W504</td>
<td>0.35 L/min</td>
</tr>
<tr>
<td>PF2W520</td>
<td>1.7 L/min</td>
</tr>
<tr>
<td>PF2W540</td>
<td>3.5 L/min</td>
</tr>
<tr>
<td>PF2W511</td>
<td>7 L/min</td>
</tr>
</tbody>
</table>

- **Rated flow range of sensor**
- **Set flow rate range of sensor**

Series **PF2A/PF2W**

Specific Product Precautions 4

Be sure to read before handling. Refer to back page 1 for Safety Instructions and “Handling Precautions for SMC Products” (M-E03-3) for Flow Switch Precautions.
4-channel Flow Monitor

Handling

Warning

1. Do not drop, bump, or apply excessive impacts (980 m/s²) while handling. Although the body of the flow monitor case may not be damaged, the inside of the flow monitor could be damaged and lead to a malfunction.

2. The tensile strength of the power supply/output connection cable is 50N and the sensor lead wire with a connector is 25N. Applying a greater pulling force than the applicable specified tensile strength to either of these components can lead to a malfunction. When handling, hold the body of the controller.

Connection

Warning

1. Incorrect wiring can damage the switch and cause a malfunction or erroneous switch output. Connections should be done while the power is turned off.

2. Do not attempt to insert or pull the flow rate sensor or its connector when the power is on. Switch output may malfunction.

3. Wire separately from power lines and high voltage lines, avoiding wiring in the same conduit with these lines. Malfunctions may occur due to noise from these other lines.

4. If a commercial switching power supply is used, make sure that the F.G. terminal is grounded.

Operating Environment

Warning

1. Our 4-channel flow monitor is CE marked, however, it is not equipped with surge protection against lightning. Lightning surge countermeasures should be applied directly to system components as necessary.

2. Our 4-channel flow monitor does not have an explosion proof rating.

3. Enclosure "IP65" applies only to the front face of the panel when mounting. Do not use in an environment where oil splashing or spraying are anticipated.

Mounting

Warning

The front face of the panel mount conforms to IP65, however there is a possibility of liquid infiltration if the panel mount adapter is not installed securely and properly. Securely fix the adapter with screws as shown below.

Wiring

Caution

1. Connecting sensor cable and connector (ZS-28-CA-□)
 - Cut the sensor cable as shown below.
 - Insert each lead wire into the corresponding connector number by following the chart provided below.

<table>
<thead>
<tr>
<th>Connector no.</th>
<th>Cable wire color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Brown (DC+)</td>
</tr>
<tr>
<td>2</td>
<td>Not used</td>
</tr>
<tr>
<td>3</td>
<td>Blue (DC−)</td>
</tr>
<tr>
<td>4</td>
<td>White (IN: 1 to 5 V)</td>
</tr>
</tbody>
</table>

 - Make sure that the numbers on the connector and the wire colors match. After verifying that the wires are fully inserted, temporarily hold A down by hand.
 - Using pliers, press the center of A straight down.
 - Note that that connector cannot be taken apart for reuse once it is crimped. Use a new sensor connector if wiring or cable insertion is done incorrectly.

2. Inserting/Detaching of sensor connector, power supply/output connector
 - Insert each connector straightforwardly until it clicks and locks onto the body.
 - To remove the connector, pull it straight out while pushing the lever with your thumb.