# Vacuum Pad

# **ZP3E** Series

Ø32, Ø40, Ø50, Ø63, Ø80, Ø100, Ø125

Flat Type With Groove Bellows Type

With Groove

(RoHS)

# Stability of suction position, improved ease of removal

Number of mounting screws reduced (4 pcs.  $\rightarrow$  1 pc.)

Pad and metal parts can be disposed of separately.

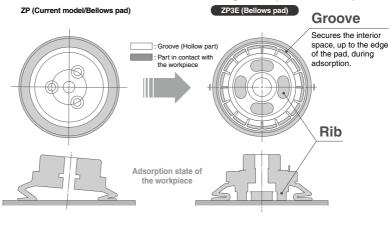
Improved uneven workpiece surface suction.



ZP3

ZP3E ZP2

ZP2V


ZΡ ZPT ZPR

# Stability of suction position

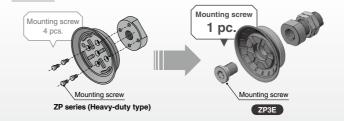
Groove and rib formed to adsorb with entire surface



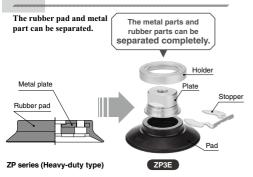
■ Ribs reduce the inclinations during transport of workpiece.



# Improved ease of removal

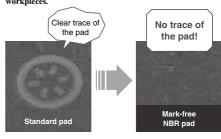

#### With groove

Dents and bumps on the adsorption surface prevent the workpiece from sticking to it. This facilitates easy removal.


#### Shot-blasted

Micro-dents and bumps are formed on the adsorption surface. Workpieces can be removed easily.

# The number of mounting screws reduced




# Can be disposed of separately.



# Mark-free

For use where adsorption marks must not be left on workpieces.

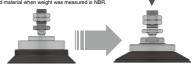


# Suction flow rate increased

Applicable to workpieces with a large suction flow rate and high permeability, and vacuum blow pumps with large suction flow rates





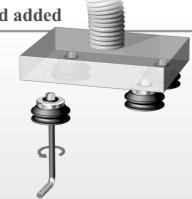

|              | ZP (Curre    | nt model)         | ZP           | 3E         |  |
|--------------|--------------|-------------------|--------------|------------|--|
| Pad diameter | Suction port | Area [mm²]        | Suction port | Area [mm²] |  |
| ø32          | _            | _                 |              |            |  |
| ø40          | ø6           | 28.3 Ø <b>8.4</b> | 55.4         |            |  |
| ø50          | ØU           | 20.5              |              |            |  |
| ø63          | ø8           | 50.2              |              |            |  |
| ø80          | 96           | 50.2              | ø16.4        | 211        |  |
| ø100         | ø10          | 78.52             | 910.4        | 211        |  |
| ø125         | 910          | 70.32             |              |            |  |

# Ball joint type pad weight reduced

Weight reduced by changing the

by up to 290 g internal structure and materials \* The pad material when weight was measured is NBR.

Weight reduced




|              | ZP2/Flat type | ZP3E/Flat type with groove |
|--------------|---------------|----------------------------|
| Pad diameter | Weight [g]    | Weight [g]                 |
| ø32          | _             | 56                         |
| ø40          | 91            | 57                         |
| ø50          | 110           | 75                         |
| ø63          | 230           | 150                        |
| ø80          | 270           | 160                        |
| ø100         | 430           | 190                        |
| ø125         | 560           | 270                        |

Direct mounting with male thread added

- Direct mounting
  - Reduced in height
    - Easy mounting with tightening with a hexagonal wrench





ZP3

ZP3E ZP2

ZP2V

ZΡ

# Vacuum Pad Flat Type with Groove/Bellows Type with Groove **ZP3E** Series

## Pad Unit Variations



| Form       |                                                                                                                                           | Pad diameter |     |     |     |     |      | Material | Page                                      |      |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|-----|-----|-----|------|----------|-------------------------------------------|------|
|            |                                                                                                                                           | ø32          | ø40 | ø50 | ø63 | ø80 | ø100 | ø125     | Material                                  | raye |
| ZP3E-□UM-□ | Flat type with groove For adsorption of general workpieces. To be used when adsorption surface of the workpiece is flat and not deformed. | •            |     |     |     |     |      |          | NBR<br>Silicone rubber<br>Urethane rubber | 404  |
| ZP3E-□BM-□ | Bellows type with groove<br>To be used when<br>adsorption surface of the<br>workpiece is slanted.                                         |              |     |     |     |     |      |          | FKM<br>Mark-free NBR                      | 404  |

Vacuum Pad Flat Type with Groove/Bellows Type with Groove 932, 940, 950, 963, 980, 9100, 9125

| Model Selection P.3  1. Features and Precautions for Vacuum Adsorption P.3  2. Vacuum Pad Selection P.3  3. Selection of Vacuum Ejector and Vacuum Switching Valve P.3  4. Leakage Volume during Workpiece Adsorption P.3  5. Adsorption Response Time P.3  6. Precautions on Vacuum Equipment Selection and SMC's Proposal P.3  7. Vacuum Equipment Selection Example P.3  8. Data P.3 | 183<br>183<br>192<br>192<br>193<br>195<br>198 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| ■ Flat Type Pad/Bellows Type Pad with Groove · P.40 Pad Unit: Flat Type with Groove · P.4 Pad Unit: Bellows Type with Groove · P.4                                                                                                                                                                                                                                                      | 04                                            |
| With Set Screw: Flat Type with Groove                                                                                                                                                                                                                                                                                                                                                   | 08<br>10<br>12<br>14<br>16                    |
| With Male Thread Adapter: Flat Type with Groove                                                                                                                                                                                                                                                                                                                                         | 20<br>22<br>24                                |
| With Buffer: Flat Type with Groove                                                                                                                                                                                                                                                                                                                                                      | 28                                            |

| Lateral Vacuum Inlet/With Buffer ····· P                                                                                                                                                                                                                                                                                                                                                               |                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| With Buffer: Flat Type with Groove With Buffer: Bellows Type with Groove                                                                                                                                                                                                                                                                                                                               |                                           |
| Vertical Vacuum Inlet/With Ball Joint Adapter P With Ball Joint Adapter: Flat Type with Groove With Ball Joint Male Thread Adapter: Flat Type with Groove With Ball Joint Female Thread Adapter: Flat Type with Groove With Ball Joint Adapter: Bellows Type with Groove With Ball Joint Male Thread Adapter: Bellows Type with Groove With Ball Joint Female Thread Adapter: Bellows Type with Groove | P.436<br>P.439<br>P.441<br>P.443<br>P.445 |
| Lateral Vacuum Inlet/With Ball Joint Adapter P. With Ball Joint Male Thread Adapter: Flat Type with Groove With Ball Joint Female Thread Adapter: Flat Type with Groove With Ball Joint Male Thread Adapter: Bellows Type with Groove With Ball Joint Female Thread Adapter: Bellows Type with Groove                                                                                                  | P.449<br>P.452<br>P.454                   |
| ■ Vertical Vacuum Inlet/With Ball Joint Buffer · · · P With Ball Joint Buffer: Flat Type with Groove · · · · · · · · With Ball Joint Buffer: Bellows Type with Groove · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                            | P.458                                     |
| Lateral Vacuum Inlet/With Ball Joint Buffer P With Ball Joint Buffer: Flat Type with Groove With Ball Joint Buffer: Bellows Type with Groove                                                                                                                                                                                                                                                           | P.463                                     |
| Construction Component Part No. How to Replace the Pad Component Parts: Dimensions Ball Joint Assembly/Unit Part No. Ball Joint Buffer Unit Part No.                                                                                                                                                                                                                                                   | P.471<br>P.479<br>P.480<br>P.487          |
| Dali Julit Duller Utilt Fart NO.                                                                                                                                                                                                                                                                                                                                                                       | r.492                                     |

# With Adapter Variations





Mounting

Buffer

thread size attachment

Page

|                                               |        |                      |                                         |      | -                                              |
|-----------------------------------------------|--------|----------------------|-----------------------------------------|------|------------------------------------------------|
| Vacuum inlet dire<br>Mounting                 | ection | Mounting thread size | Buffer attachment                       | Page | Vacuum inlet direction Mounting                |
| Vertical  Male thread/Direct mounting  ZP3E-T |        | M10<br>M16           |                                         | 408  | Vertical  Male thread/Direct mounting  ZP3E-TF |
| Vertical  Male thread/Plate connection        |        | M14<br>M16           | Without<br>buffer                       | 408  | Vertical  Male thread/Plate connection         |
| Vertical Female thread mounting               |        | M8<br>M10<br>M12     |                                         | 408  | Vertical Female thread mounting                |
| ZP3E-T□□□-□                                   |        | M18                  |                                         |      | ZP3E-TF□□□-□                                   |
| Lateral  Male thread mounting                 |        | M14<br>M16           | Without buffer                          | 420  | Lateral  Male thread mounting                  |
| ZP3E-Y□□□-□                                   |        |                      |                                         |      | ZP3E-YF□□□-□                                   |
| Emale thread mounting                         |        | M8<br>M12            |                                         | 420  | Emale thread mounting  ZP3E-YF                 |
|                                               |        |                      |                                         |      |                                                |
| Vertical  Male thread mounting                |        |                      | With                                    | 428  | Vertical  Male thread mounting                 |
| ZP3E-T□□□JB□                                  |        | M18                  | buffer                                  |      | ZP3E-TF□□□JB□                                  |
| Lateral Male thread mounting                  |        | M22                  | Stroke<br>· 10 mm<br>· 30 mm<br>· 50 mm | 432  | Lateral  Male thread mounting                  |
| ZP3E-Y□□□JB□                                  |        |                      |                                         |      | ZP3E-YF□□□JB□                                  |
|                                               |        |                      |                                         |      |                                                |

| Wouring                                             |            |                                         |     |
|-----------------------------------------------------|------------|-----------------------------------------|-----|
| Vertical  Male thread/Direct mounting  ZP3E-TF□□□-□ | M6<br>M12  |                                         | 436 |
| Vertical  Male thread/Plate connection  ZP3E-TF     | M14<br>M16 | Without<br>buffer                       | 436 |
| Vertical Female thread mounting ZP3E-TF□□□-□        | M8<br>M12  |                                         | 436 |
| Lateral Male thread mounting                        | M14<br>M16 | Without                                 | 449 |
| Lateral Female thread mounting  ZP3E-YF             | M8<br>M12  | buffer                                  | 449 |
| Vertical  Male thread mounting  ZP3E-TF             | M18        | With buffer                             | 458 |
| Lateral Male thread mounting                        | M22        | Stroke<br>· 10 mm<br>· 30 mm<br>· 50 mm | 463 |

ZP3 ZP3E

ZP2 ZP2V

ZP

ZPT ZPR XT661

# Vacuum Equipment Model Selection

# CONTENTS

#### Features and Precautions for Vacuum Adsorption Page 383 Vacuum Pad Selection Page 383 Vacuum Pad Selection Procedures Points for Selecting Vacuum Pads A. Shear Force and Moment Applied to Vacuum Pad B. Theoretical Lifting Force Vacuum Pad Type Vacuum Pad Material Rubber Material and Properties Color and Identification Buffer Attachment Pad Selection by Workpiece Type 3 Selection of Vacuum Ejector and Vacuum Switching Valve Page 392 Calculating Vacuum Ejector and Switching Valve Size with the Formula Page 392 4 Leakage Volume during Workpiece Adsorption Leakage Volume from Conductance of Workpiece Leakage Volume from Suction Test 5 Adsorption Response Time Page 393 Relationship between Vacuum Pressure and Response Time after Supply Valve (Switching Valve) is Operated Calculating Adsorption Response Time with the Formula Adsorption Response Time from the Selection Graph 6 Precautions on Vacuum Equipment Selection and SMC's Proposal Safety Measures Precautions on Vacuum Equipment Selection Vacuum Ejector or Pump and Number of Vacuum Pads Vacuum Ejector Selection and Handling Precautions Supply Pressure of Vacuum Ejector Timing for Vacuum Generation and Suction Verification A. Timing for Vacuum Generation B. Suction Verification C. Set Pressure for Vacuum Pressure Switch Dust Handling of Vacuum Equipment Vacuum Equipment Selection Example **Page 398** Transfer of Semiconductor Chips 8 Data Page 399 Selection Graph Glossarv of Terms

Countermeasures for Vacuum Adsorption System Problems (Troubleshooting)

Non-conformance ExamplesTime of Replacement of Vacuum Pad

#### 1 Features and Precautions for Vacuum Adsorption

Vacuum adsorption system as a method to hold a workpiece has the following features.

- Compared with the mechanical gripper and other similar products, it has a simpler construction and fewer moving parts.
- Workpieces with any shape are possible if they have an adsorption surface.
- · No need for accurate positioning
- · Compatible with soft and easily-deformed workpieces

However, special care is required in the following conditions.

- Be careful and do not drop the workpiece caused by the transfer conditions (acceleration, vibration, or impact).
- The piping may be clogged by liquid or particles suctioned near the workpiece.
- It is necessary to place the pad in the appropriate position to transfer heavy objects.
- The vacuum pad (rubber) may deteriorate depending on the operating environment and conditions.
- · As the product life (replacement period) depends on the customer's operating conditions, it cannot be estimated beforehand.

A suction test is recommended with actual equipment before selecting the product model.

Consider the features and precautions shown above, and perform periodic maintenance and take corrective actions for the operating conditions.

#### 2 Vacuum Pad Selection

Before selecting the product model, read "How to Order", "Vacuum Equipment Precautions", and "Safety Instructions."

The operating range and performance data and values shown in this catalog are the guidelines for selecting a model. In actual operation, there is a possibility that a general specification is not applicable due to unexpected factors or conditions.

Before using the product, determine whether or not the values shown in this catalog are applicable to expected usage, and accept all danger and responsibility caused thereby. SMC cannot take any responsibility for any items which are not shown in this catalog.

#### Vacuum Pad Selection Procedures

- 1) Fully taking into account the balance of a workpiece, identify the suction position, number of pads and applicable pad diameter (or pad area).
  - \* When selecting the model based on product weight, there is a possibility that the workpiece cannot be adsorbed or it is dropped depending on the operating conditions (workpiece balance, transfer acceleration, pressure or friction force applied to the workpiece during transfer etc.).
- 2) Find the theoretical lifting force from the identified adsorption area (pad area x number of pads) and vacuum pressure, and then find the lifting force considering actual lifting and safety factor of transfer condition.
  - \* Use the calculated values as a guideline (reference value) and check the actual values by performing a suction test as necessary.
- Determine the necessary pad diameter (pad area) and suction position (workpiece balance) so that the lift force is larger than weight of the workpiece.
- 4) Determine the pad form and materials, and the necessity of buffer based on the operating environment, and the workpiece shape and materials.
- 5) This product is not designed to hold a vacuum.
- 6) Perform a suction test with actual equipment to determine whether or not the product can be used.

The above shows selection procedures for general vacuum pads; thus, they will not be applicable for all pads. Customers are required to conduct a test on their own and to select applicable suction conditions and pads based on the test results.

#### Points for Selecting Vacuum Pads

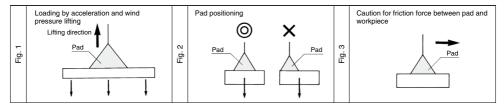
#### A. Shear Force and Moment Applied to Vacuum Pad

- a) Vacuum pads are susceptible to shear force (parallel force with adsorption surface) and moment.
- b) Minimize the moment applied to the vacuum pad with the position of the workpiece center of gravity in mind.
- c) The acceleration rate of the movement must be as small as possible, and make sure to take into consideration the wind pressure and impact. If measures to slow down the acceleration rate are introduced, safety to prevent the workpiece from dropping will improve.
- d) Avoid lifting the workpiece by adsorbing the vertical side with a vacuum pad (vertical lifting).
   When it is unavoidable, a sufficient safety factor must be secured.



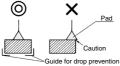
ZP3

ZP3E ZP2

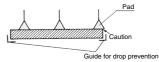

ZP2V

ΖP

ZPT


#### Lifting Force, Moment, Horizontal Force

- (Refer to Fig. 1) To lift a workpiece vertically, make sure to take into consideration the acceleration rate, wind pressure, impact, etc., in addition to the mass of the workpiece.
- (Refer to Fig. 2) Because the pads are susceptible to moments, mount the pad so as not to allow the workpiece to create a moment.
- (Refer to Fig. 3) When a workpiece that is suspended horizontally is moved laterally, the workpiece could shift depending on the extent of the acceleration rate or the size of the friction coefficient between the pad and the workpiece. Therefore, the acceleration rate of the lateral movement must be minimized.




#### **Balance of Pad and Workpiece**

 Make sure that the pad's adsorption area is not larger than the surface of the workpiece to prevent vacuum leakage and unstable picking.

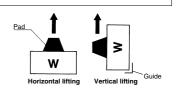


2) If multiple pads are used for transferring a flat object with a large surface area, properly allocate the pads to maintain balance. Also, make sure that the pads are aligned properly to prevent them from becoming disengaged along the edges.



Provide an auxiliary device (example: a guide for preventing the workpieces from dropping) as necessary.

- \* Mount the guide for drop prevention so that no load is applied to the workpiece (it does not push the workpiece up). If a load is applied, it is applied to the pad when the guide for drop prevention is removed. This may drop the workpiece.
- 3) Consider that the load may increase at a certain place due to the suction balance.


#### Formula examples with beams (Reference) Load/Shape conditions ۸<sub>Č</sub> . в A Α<sub>Ğ</sub> в⊼ Λ Δ Λ D С С RA RR RA RB RA RB RC Formula RA-Ph/I RA=RB=P/2 RA=RC=5Pb/16 (Reactive force: R RB=Pa/L W=P RB=11P/8 Total load: W) W-P

#### **Mounting Position**

The basic mounting method is a horizontal lift.

Do not perform a suction when tilted, vertical suction, or holding suction (the pad receives the load of the workpiece). If the unit must be installed in such a manner, be certain to guarantee guide and absolute safety.

The vacuum pad is designed for workpiece transfer while suctioned from above. When the workpiece is suctioned from below or it is held with the pad after being positioned by other components, perform a suction test to determine whether or not the transfer method is applicable.



#### **B. Theoretical Lifting Force**

- The theoretical lifting force is determined by vacuum pressure and contact area of the vacuum pad.
- Since the theoretical lifting force is the value measured at the static state, the safety factor responding to the actual operating conditions must be estimated in the actual operation.
- It is not necessarily true that higher vacuum pressure is better. Extremely high vacuum pressure may cause problems.
  - If the vacuum pressure is higher than necessary, an increase in the friction of the pad, generation of cracks, sticking of
    the pad and workpiece, and sticking of the pad (bellows pad) will occur easily, possibly shortening the life of the pad.
  - Doubling the vacuum pressure makes the theoretical lifting force double, while to doubling the pad diameter makes the theoretical lifting force quadruple.
  - When the vacuum pressure (set pressure) is high, it makes not only response time longer, but also the necessary energy to generate a vacuum larger.

Example) Theoretical lifting force = Pressure x Area 2 times

| Pad diameter | Area [cm <sup>2</sup> ] | Vacuum pressure<br>[-40 kPa]    | Vacuum pressure<br>[-80 kPa]        |
|--------------|-------------------------|---------------------------------|-------------------------------------|
| ø6           | 0.28                    | Theoretical lifting force 1.1 N | Theoretical lifting force 2.2 N     |
| ø16          | 2.01                    | Theoretical lifting force 8.0 N | Theoretical lifting force<br>16.1 N |

4 times

#### Lifting Force and Vacuum Pad Diameter

- Set the vacuum pressure below the pressure that has been stabilized after adsorption.

  However, when a workpiece is permeable or has a rough surface, note that the vacuum pressure drops since the workpiece takes air in. In this case, it is necessary to perform a suction test to check the vacuum pressure reached during suction.
- The vacuum pressure when using an ejector is approximately -40 to -60 kPa as a guide.

The theoretical lifting force of a pad can be found by calculation or from the theoretical lifting force table.

#### Calculation -

 $W = P \times S \times 0.1 \times \frac{1}{4}$ 

W: Lifting force [N]

P: Vacuum pressure [kPa]

S: Pad area [cm2]

t : Safety factor Horizontal lifting: 4 or more Vertical lifting: 8 or more Pad W
W
Horizontal lifting



(This type of application should basically be avoided.

#### **Theoretical Lifting Force**

The theoretical lifting force (not including the safety factor) is found from the pad diameter and vacuum pressure. The required lifting force is then found by dividing the theoretical lifting force by the safety factor t.

Lifting force = Theoretical lifting force + t

Theoretical Lifting Force (Theoretical lifting force = P x S x 0.1)

| Interestical Litting Force (Theoretical litting force = P x 5 x 0.1) [N] |           |             |             |             |             |             |       |        |
|--------------------------------------------------------------------------|-----------|-------------|-------------|-------------|-------------|-------------|-------|--------|
| Pad diameter [mm]                                                        |           | ø <b>32</b> | ø <b>40</b> | ø <b>50</b> | ø <b>63</b> | ø <b>80</b> | ø100  | ø125   |
| S: Pad a                                                                 | rea [cm²] | 8.04        | 12.56       | 19.63       | 31.16       | 50.24       | 78.50 | 122.66 |
|                                                                          | -85       | 68.3        | 107         | 167         | 265         | 427         | 667   | 1043   |
|                                                                          | -80       | 64.3        | 100         | 157         | 249         | 402         | 628   | 981    |
|                                                                          | -75       | 60.3        | 94.2        | 147         | 234         | 377         | 589   | 920    |
|                                                                          | -70       | 56.3        | 87.9        | 137         | 218         | 352         | 550   | 859    |
| Vacuum                                                                   | -65       | 52.2        | 81.6        | 128         | 203         | 327         | 510   | 797    |
| pressure<br>[kPa]                                                        | -60       | 48.2        | 75.4        | 118         | 187         | 301         | 471   | 736    |
| [Ki aj                                                                   | -55       | 44.2        | 69.1        | 108         | 171         | 276         | 432   | 675    |
|                                                                          | -50       | 40.2        | 62.8        | 98.1        | 156         | 251         | 393   | 613    |
|                                                                          | -45       | 36.2        | 56.5        | 88.3        | 140         | 226         | 353   | 552    |
|                                                                          | -40       | 32.2        | 50.2        | 78.5        | 125         | 201         | 314   | 491    |

ZP3

ZP3E

ZP2 ZP2V

ΖP

ZPT ZPR

#### Vacuum Pad Type

Flat type with groove and bellows type with groove are available in the ZP3E series. Select the optimal form in accordance with the
workpiece and operating environment.

#### Pad Type

| Pad form                 | Application                                                                                                         |
|--------------------------|---------------------------------------------------------------------------------------------------------------------|
| Flat type with groove    | For adsorption of general workpieces. To be used when adsorption surface of the workpiece is flat and not deformed. |
| Bellows type with groove | To be used when adsorption surface of the workpiece is slanted.                                                     |

\* The bellows of the bellows type pad (including groove) may become stuck due to the operating conditions (flat board, high vacuum pressure, suction time (vacuum holding), etc.). If so, consider using a flat type pad. Select the pad type after evaluating them sufficiently at the customer's site.

#### Vacuum Pad Material

• It is necessary to determine vacuum pad materials carefully taking into account the workpiece shape, adaptability in the operating environment, effect after being adsorbed, electrical conductivity, etc.

#### Rubber Material and Properties

|                                        | General name                       | NBR (Nitrile rubber)                                           | Silicone rubber                                | Urethane rubber               | FKM (Fluoro rubber)                           |  |
|----------------------------------------|------------------------------------|----------------------------------------------------------------|------------------------------------------------|-------------------------------|-----------------------------------------------|--|
|                                        | Main features                      | Good oil resistance, abrasion resistance, and aging resistance | Excellent heat resistance, and cold resistance | Excellent mechanical strength | Best heat resistance, and chemical resistance |  |
| Pure                                   | gum property (specific gravity)    | 1.00-1.20                                                      | 0.95-0.98                                      | 1.00-1.30                     | 1.80-1.82                                     |  |
| dum                                    | Impact resilience                  | 0                                                              | 0                                              | 0                             | Δ                                             |  |
| 1 g                                    | Abrasion resistance                | 0                                                              | × to △                                         | 0                             | 0                                             |  |
| of blended                             | Tear resistance                    | 0                                                              | × to △                                         | 0                             | 0                                             |  |
| ler                                    | Flex crack resistance              | 0                                                              | × to ○                                         | 0                             | 0                                             |  |
| of to                                  | Maximum operation temperature °C   | 120                                                            | 200                                            | 60                            | 250                                           |  |
| ies                                    | Minimum operation temperature °C   | 0                                                              | -30                                            | 0                             | 0                                             |  |
| per                                    | Volume resistivity [Ωcm]           | _                                                              | _                                              | _                             | _                                             |  |
| bro                                    | Heat aging                         | 0                                                              | 0                                              | Δ                             | 0                                             |  |
| g                                      | Weather resistance                 | 0                                                              | 0                                              | 0                             | 0                                             |  |
| Physical properties                    | Ozone resistance                   | Δ                                                              | 0                                              | 0                             | 0                                             |  |
| ₫                                      | Gas permeability resistance        | 0                                                              | $\times$ to $\triangle$                        | $\times$ to $\triangle$       | × to △                                        |  |
| 90                                     | Gasoline/Gas oil                   | 0                                                              | × to △                                         | 0                             | 0                                             |  |
| star                                   | Benzene/Toluene                    | × to △                                                         | ×                                              | $\times$ to $\triangle$       | 0                                             |  |
| resi                                   | Alcohol                            | 0                                                              | 0                                              | Δ                             | △ to ◎                                        |  |
| Chemical resistance<br>Oil resistance  | Ether                              | × to △                                                         | × to △                                         | ×                             | × to △                                        |  |
| Ö.                                     | Ketone (MEK)                       | ×                                                              | 0                                              | ×                             | ×                                             |  |
| ਠ                                      | Ethyl acetate                      | × to △                                                         | Δ                                              | $\times$ to $\triangle$       | ×                                             |  |
| 9 6                                    | Water                              | 0                                                              | 0                                              | Δ                             | 0                                             |  |
| star                                   | Organic acid                       | × to △                                                         | 0                                              | ×                             | △ to ○                                        |  |
| esis                                   | Organic acid of high concentration | △ to ○                                                         | Δ                                              | ×                             | 0                                             |  |
| Je r                                   | Organic acid of low concentration  | 0                                                              | 0                                              | Δ                             | 0                                             |  |
| Alkaline resistance<br>Acid resistance | Strong alkali                      | 0                                                              | 0                                              | ×                             | 0                                             |  |
| ₹^                                     | Weak alkali                        | 0                                                              | 0                                              | ×                             | 0                                             |  |

 <sup>○ =</sup> Excellent --- Not affected at all, or almost no effect
 ○ = Good --- Affected a little, but adequate resistance depending on conditions
 △ = Better not to use if possible
 × = Unsuitable for usage. Severely affected.

#### Color and Identification

| General name            | NBR (Nitrile rubber) | Silicone rubber | Urethane rubber | FKM (Fluoro rubber) | Mark-free NBR |
|-------------------------|----------------------|-----------------|-----------------|---------------------|---------------|
| Color of rubber         | Black                | White           | Brown           | Black               | Black         |
| Identification (Symbol) | _                    | _               | _               | F                   |               |
| Rubber hardness (±5°)   | A55                  | A50             | A50             | A60                 | A60           |
| ` , , ,                 | A55                  | A50             | A50             | A60                 | A60           |



<sup>\*</sup> Properties, chemical resistance, and other values are not guaranteed.

These values depend on the operating environment, so they cannot be guaranteed by SMC. Thorough research and confirmation are necessary before usage.

|                      |                      |                                          | Material of the                         | Д               | Static *5       |                           |             |
|----------------------|----------------------|------------------------------------------|-----------------------------------------|-----------------|-----------------|---------------------------|-------------|
| Pad type             |                      | adsorption part<br>(Part in contact with | Condition *2                            | (Initial value) | Operating       | friction                  |             |
|                      |                      |                                          | the workpiece)                          | Visual checking | Vapor method *3 | temperature<br>range [°C] | ratio       |
| Mark-free Pad Series | Mark-free<br>NBR pad | -10                                      | Mark-free NBR<br>(Specially treated *4) | ©               | 0               | 5 to 40                   | 0.15 to 0.2 |
| Standard             | ZP series            |                                          | NBR<br>FKM<br>Conductive NBR            | ×               | ×               |                           |             |
| Stan                 | (Standard material)  |                                          | Silicone rubber<br>Urethane rubber      | 0               | ×               | _                         | _           |

Adsorption mark characteristics [©: Little or no influence O: Can be used depending on the conditions. X: Not suitable]
For NBR, FKM, and conductive rubber, black powder (rubber materials) may adhere to the the workpiece when it is adsorbed or when horizontal slippage occurs.

\* The above table is for reference when selecting the pad.

Values and evaluation are reference data only. Preparatory testing under actual operating conditions is recommended.

- \*1 Adsorption mark Indicates the transfer of rubber constituents from the pad.
- \*2 Condition Visual evaluation of the adsorption mark
- \*3 Vapor method Method of applying vapor to the workpiece to visually check for adsorption marks
- \*4 Specially treated NBR is specially treated to modify and reduce the transfer of rubber constituents.
- \*5 Static friction ratio —— Static friction ratio when the workpiece (glass) is adsorbed by the pad. (NBR = 1 as a benchmark)

#### Cleaning method [Mark-free NBR pad]

- Always clean the product before operation and when carrying out regular maintenance.
- 1) Hold the part other than the adsorption surface.
  - \* Non particle-generating vinyl gloves are recommended
- 2) Soak a non particle-generating cloth in 2-propanol (isopropyl alcohol) (purity > 99.5%).
  - \* Please use the solution recommended above.
- 3) Wipe the adsorption surface (pad/resin attachment) and the part that comes into contact with the workpiece.
- 4) Dry them with clean air blow. (Or, wipe again with a dry non particle-generating cloth.)

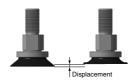
Fine cracks may be generated on the mark-free NBR pad. However, it does not affect product operation.

#### Mark-free Pad Series [Mark-free NBR]

- Although the adsorption marks (transfer of rubber component to workpieces) of this product are minimized compared with current rubber pads, confirm if the adsorption marks have any effect when used in the actual system before use.
- High vacuum pressure leaks from the lip may occur in the mark-free pad series due to the manufacturing method compared with common rubber pads.
- 2) Note that this product cannot be used to hold a vacuum.
- 3) Secure as high a flow rate as possible to suppress the pressure effect caused by leakage to a minimum.
- 4) Be sure to wash the portion of the pad that contacts the workpiece before use, or during periodic maintenance. If the pad is not washed correctly, deposits and solvents, etc. from the washing may remain as an adsorption mark.
- 5) When adsorbing workpieces with few impurities (high cleanliness), if "Mark-free NBR" is used, the edge of the pad may wear out early. Please consider using the ZP2 series "Stuck fluororesin pad" or "Resin attachment."

ZP3

ZP3E


ZP2V

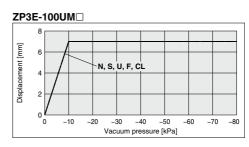
ΖP

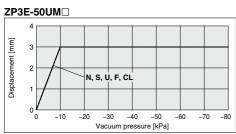
ZPT

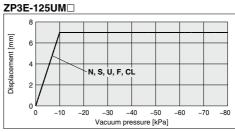


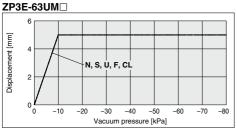
#### Pad Displacement to Vacuum Pressure (Flat Type with Groove)



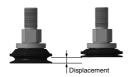


The data shown below are only for reference and are not guaranteed. These values depend on the operating environment, workpiece mass and transfer method. Therefore, thorough research and confirmation are necessary before use.


NBR (N): ——— Silicone rubber (S): · · · · · · Urethane rubber (U): - - - - FKM (F): - · · · · Mark-free NBR (CL): - · · · ·


# ZP3E-32UM N, S, U, F, CL No. S, U, F, CL Vacuum pressure [kPa]

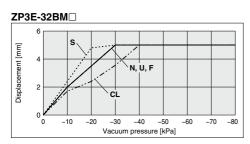

# ZP3E-80UM 6 N, S, U, F, CL 0 0 0 -10 -20 -30 -40 -50 -60 -70 -80 Vacuum pressure [kPa]

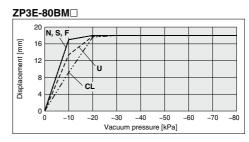


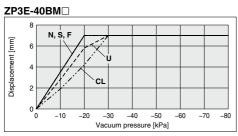


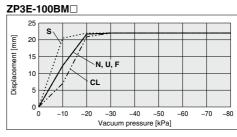


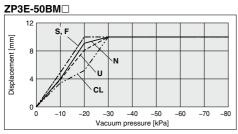


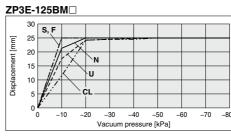





#### Pad Displacement to Vacuum Pressure (Bellows Type with Groove)





The data shown below are only for reference and are not guaranteed. These values depend on the operating environment, workpiece mass and transfer method. Therefore, thorough research and confirmation are necessary before use.


NBR (N): ——— Silicone rubber (S): ——— FKM (F): ——— Mark-free NBR (CL):————














ZP3E-63BM

16
N, S, F

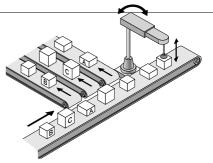
0
-10
-20
-30
-40
-50
-60
-70
-80
Vacuum pressure [kPa]

ZP2V ZP

ZP3

ZP3E

ZP2


#### Buffer Attachment

• Choose buffer type when the workpieces are of varying heights, the workpieces are fragile, or you need to reduce the impact to the pad. If rotation needs to be limited, use non-rotating buffer.

в с

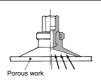
#### **Unsteady Distance between Pad and Workpiece**

When the workpieces are of varying heights, use the buffer type pad with built-in spring. The spring creates a cushion effect between the pad and the workpieces. If rotation needs to be limited further, use non-rotating buffer type.



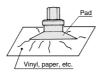
#### Notes for Attachment

The buffer is manufactured for the purpose of protecting the pad from impact when the pad is applied to a workpiece. An eccentric load applied to the buffer caused by piping (tubing) or the position of the attachment, or an improper tightening torque used when the buffer is attached may lead to poor sliding or a shortened product life. Also, minimize the load in the lateral direction.


#### Use the buffer within the stroke.

# ● Pad Selection by Workpiece Type

· Carefully select a pad for the following workpieces.

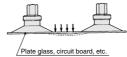

#### 1. Porous Workpiece

To pick a permeable workpiece such as paper, select a pad with a small diameter that is sufficient to lift the workpiece. Because a large amount of air leakage could reduce the pad's suction force, it may be necessary to increase the capacity of an ejector or vacuum pump or enlarge the conductance area of the piping passage.



#### 3. Soft Workpiece

If a soft workpiece such as vinyl, paper, or thin sheet is picked up, the vacuum pressure could cause the workpiece to deform or wrinkle. In such a case, it will be necessary to use a small pad or a ribbed pad and reduce the vacuum pressure.

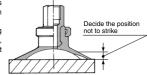



#### ● Tube Piping Reference

Prevent eccentric loads caused by piping (tubing) from being applied to the buffer. Route the tube piping with some degree of freedom, and ensure that it extends in the direction of the fitting. Also, make adjustments as required as the long piping, piping bundles, piping material, etc., may become a load.

#### 2. Flat Plate Workpiece

When a workpiece with a large surface area such as sheet glass or PCB is suspended, the workpiece could move in a wavelike motion if a large force is applied by wind pressure or by an impact. Therefore, it is necessary to ensure the proper allocation and size of pads.




#### 4. Impact to Pad

When pushing a pad to a workpiece, make sure not to apply an impact or a large force which would lead to premature deformation, cracking, or wearing of the pad. The pad should be pushed against the workpiece to the extent that its skirt portion deforms or that its

ribbed portion comes into slight contact with the workpiece. Especially, when using a smaller diameter pad, make sure to locate it

correctly.



#### 5. Adsorption Mark

The main adsorption marks are as follows:

|                                                                                                                                          | Before su          | ıction                           | After suction                                                                                                                             | Countermeasure                                                                                               |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|
| Mark due to deformed (lined)<br>workpiece                                                                                                |                    |                                  | Reduce the vacuum pressure.     If lifting force is inadequate, increase the number of pads.     Select a pad with a smaller center area. |                                                                                                              |  |  |
|                                                                                                                                          | Suction conditions | Workpiece: Ving<br>Vacuum pad: Z | yl<br>P20CS Vacuum pressure: –40 kPa                                                                                                      |                                                                                                              |  |  |
| <ul> <li>Mark due to components<br/>contained in the rubber pad<br/>(material) moving to the<br/>workpiece.</li> </ul>                   |                    |                                  |                                                                                                                                           | Use the following products.  1) Mark-free NBR pad 2) ZP2 series  • Stuck fluororesin pad  • Resin attachment |  |  |
|                                                                                                                                          | Suction conditions | Workpiece: Gla<br>Vacuum pad: Z  | ss<br>P20CS Vacuum pressure: -40 kPa                                                                                                      |                                                                                                              |  |  |
| <ul> <li>A mark which remains on the<br/>rough surface of the<br/>workpiece due to wear-out of<br/>the rubber (pad material).</li> </ul> |                    |                                  |                                                                                                                                           | Use the following products.  1) ZP2 series  • Stuck fluororesin pad  • Resin attachment                      |  |  |
|                                                                                                                                          | Suction conditions |                                  | ssin plate (Surface roughness 2.5 μ)<br>ZP20CS Vacuum pressure: –80 kPa                                                                   |                                                                                                              |  |  |

#### **Vacuum Pad Durability**

- Need to be careful of the vacuum pad (rubber) deterioration.
- When the vacuum pad is used continuously, the following problems may occur.
  - 1) Wear-out of the adsorption surface.
    - Shrinkage of the pad dimensions, sticking of the part where the rubber materials come into contact with each other (bellows pad)
  - 2) Weakening of the rubber parts (skirt of the adsorption surface, bending parts, etc.)
  - \* It may occur at an early stage depending on the operating conditions (high vacuum pressure, suction time [vacuum holding], etc.).
- Decide when to replace the pads, referring to the signs of deterioration, such as changes in the appearance due to wear, reduction in the vacuum pressure or delay in the transport cycle time.

ZP3

ZP3E

ZP2V

ΖP



## Selection of Vacuum Ejector and Vacuum Switching Valve

#### Calculating Vacuum Ejector and Switching Valve Size with the Formula

Average suction flow rate for achieving adsorption response time

 $Q = \frac{V \times 60}{T_1} + Q_L$ 

Q: Average suction flow rate [L/min (ANR)]

V : Piping capacity [L]

 $T_2 = 3 \times T_1$ 

T1: Arrival time to stable Pv 63% after adsorption [sec] T2: Arrival time to stable Pv 95% after adsorption [sec]

QL: Leakage volume during workpiece adsorption [L/min (ANR)] Note 1)

Max. suction flow rate

Qmax = (2 to 3) x Q [L/min (ANR)]

#### <Selection Procedure>

Eiector

Select the ejector with the greater maximum suction flow rate from the Qmax indicated above.

· Direct operation valve

Conductance C = 
$$\frac{Qmax}{55.5}$$
 [dm<sup>3</sup>/(s·bar)]

\* Select a valve (solenoid valve) having a conductance that is greater than that of the conductance C formula given above from the related equipment (page 793).

Note 1) QL: 0 when no leakage occurs during adsorbing a workpiece.

If there is leakage during adsorbing a workpiece, find the leakage volume based on "4. Leakage Volume during Workpiece Adsorption." Note 2) Tube piping capacity can be found in "8. Data: Piping Capacity by Tube I.D. (Selection Graph (2)).'

#### Leakage Volume during Workpiece Adsorption

Air could be drawn in depending on the type of workpiece. As a result, the vacuum pressure in the pad becomes reduced and the amount of vacuum that is necessary for adsorption cannot be attained.

When this type of workpiece must be handled, it is necessary to select the proper size of the ejector and the vacuum switching valve by taking into consideration the amount of air that could leak through the workpiece.





#### Leakage Volume from Conductance of Workpiece

Leakage volume QL = 55.5 x CL

QL: Leakage volume [L/min (ANR)]

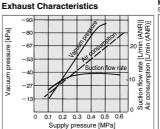
CL: Conductance between workpiece and pad, and workpiece opening area [dm3/(s·bar)]

#### Leakage Volume from Suction Test

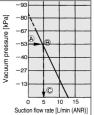
As described in the illustration below, pick up the workpiece with the ejector, using an ejector, pad and a vacuum gauge.

At this time, read vacuum pressure P1, obtain the suction flow rate from the flow rate characteristics graph for the ejector that is being used, and render this amount as the leakage of the workpiece.




Exercise: Using a supply pressure of 0.45 MPa, when the ejector (ZH07□S) picks up a workpiece that leaks air, the vacuum gauge indicated a pressure of -53 kPa. Calculate the leakage volume from the workpiece.

#### <Selection Procedure>


When obtaining the suction flow rate at a vacuum pressure of -53 kPa from the ZH07DS flow rate characteristics graph, the suction flow rate is 5 L/min (ANR). ( $\triangle \rightarrow B \rightarrow C$ )

Leakage volume ≈ Suction flow rate 5 L/min (ANR)

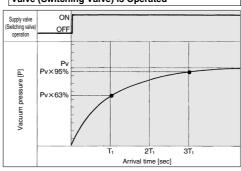
#### ZH07BS, ZH07DS







## **Adsorption Response Time**


When a vacuum pad is used for the adsorption transfer of a workpiece, the approximate adsorption response time can be obtained (the length of time it takes for the pad's internal vacuum pressure to reach the pressure that is required for adsorption after the supply valve {vacuum switching valve} has been operated). An approximate adsorption response time can be obtained through formulas and selection graphs.

#### Relationship between Vacuum Pressure and Response Time after Supply Valve (Switching Valve) is Operated

The relationship between vacuum pressure and response time after the supply valve (switching valve) is operated as shown below.

# Vacuum System Circuit Switching valve Switching valve Workpiece Workpiece

#### Vacuum Pressure and Response Time after Supply Valve (Switching Valve) is Operated



Pv: Final vacuum pressure

T1: Arrival time to 63% of final vacuum pressure Pv

T2: Arrival time to 95% of final vacuum pressure Pv

#### Calculating Adsorption Response Time with the Formula

Adsorption response times T<sub>1</sub> and T<sub>2</sub> can be obtained through the formulas given below.

Adsorption response time  $T_1 = \frac{V \times 60}{2}$ 

Adsorption response time T2 = 3 x T1

Piping capacity

$$V = \frac{3.14}{4} D^2 x L x \frac{1}{1000} [L]$$

T1: Arrival time to 63% of final vacuum pressure Pv [sec]

T<sub>2</sub>: Arrival time to 95% of final vacuum pressure Pv [sec]

Q1: Average suction flow rate [L/min (ANR)]

Calculation of average suction flow rate

Eiector

Q1 = (1/2 to 1/3) x Ejector max. suction flow rate [L/min (ANR)]

Vacuum pump

 $Q_1 = (1/2 \text{ to } 1/3) \times 55.5 \times \text{Conductance of vacuum pump } [dm^3/(s\cdot bar)]$ 

D: Piping diameter [mm]

L : Length from ejector and switch valve to pad [m]

V : Piping capacity from ejector and switching valve to pad [L]

Q2: Max. flow from ejector and switching valve to pad by piping system

 $Q_2 = C \times 55.5 \text{ L/min (ANR)}$ 

Q: Smaller one between the Q1 and Q2 [L/min (ANR)]

C: Conductance of piping [dm3/(s·bar)]

For the conductance, the equivalent conductance can be found in "8. Data: Conductance by Tube I.D. (Selection Graph (3))."

ZP3

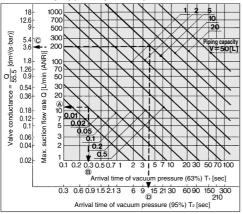
ZP3E

ZP2 ZP2V

ZΡ

ZPT ZPR

#### Adsorption Response Time from the Selection Graph


#### 1. Tube Piping Capacity

Piping capacity from the ejector and switching valve at vacuum pump to the pad can be found in "8. Data: Piping Capacity by Tube I.D. (Selection Graph (2))."

#### 2. Obtain the adsorption response times.

By operating the supply valve (switching valve) that controls the ejector (vacuum pump), the adsorption response times  $T_1$  and  $T_2$  that elapsed before the prescribed vacuum pressure is reached can be obtained from the Selection Graph (1).

#### Selection Graph (1) Adsorption Response Time



<sup>\*</sup> Conversely, the size of the ejector or the size of the switching valve of the vacuum pump system can be obtained from the adsorption response time.

#### How to read the graph

Example 1: For obtaining the adsorption response time until the pressure in the piping system with a piping capacity of 0.02 L is discharged to 63% (T1) of the final vacuum pressure through the use of the vacuum ejector ZH07 S with a maximum suction flow rate of 12 L/min (ANR).

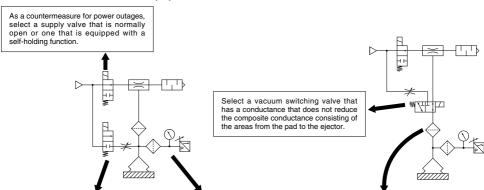
#### <Selection Procedure>

From the point at which the vacuum ejector's maximum vacuum suction flow rate of 12 L/min (ANR) and the piping capacity of 0.02 L intersect, the adsorption response time  $T_1$  that elapses until 63% of the maximum vacuum pressure is reached can be obtained. (Sequence in Selection Graph (1),  $(A) \rightarrow (B)$ ,  $T_1 \approx 0.3$  seconds.

Example 2: For obtaining the discharge response time until the internal pressure in the 5 L tank is discharged to 95% (T2) of the final vacuum pressure through the use of a valve with a conductance of 3.6 dm<sup>2</sup>/(s-bar).

#### <Selection Procedure>

From the point at which the valve's conductance of 3.6 dm<sup>3</sup>/(s-bar) and the piping capacity of 5 L intersect, the discharge response time (Tz) that elapses until 95% of the final vacuum pressure is reached can be obtained. (Sequence in Selection Graph (1),  $\bigcirc$   $\rightarrow$   $\bigcirc$  ) Tz  $\approx$  12 seconds.

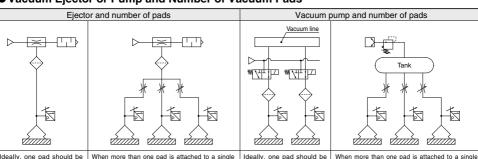



#### 6 Precautions on Vacuum Equipment Selection and SMC's Proposal

#### Safety Measures

• Make sure to provide a safe design for a vacuum pressure drop due to a disruption of power supply, or a lack of supply air. Drop prevention measures must be taken in particular when dropping a workpiece presents some degree of danger.

#### Precautions on Vacuum Equipment Selection




For the release valve, select a 2/3 port valve with a low vacuum specification. Also, use a needle valve to regulate the release flow rate

- · During the adsorption and transfer of a workpiece, verification of the vacuum switch is recommended
- · In addition, visually verify the vacuum gauge when handling a heavy or a hazardous item.
- . Install a filter (ZFA, ZFB, ZFC series) before the pressure switch if the ambient air is of low quality.

Use a suction filter (ZFA, ZFB, ZFC series) to protect the switching valve and to prevent the ejector from becoming clogged. Also, a suction filter must be used in a dusty environment. If only the unit's filter is used, it will become clogged guickly.

## Vacuum Ejector or Pump and Number of Vacuum Pads



Ideally, one pad should be used for each ejector.

ejector, if one of the workpieces becomes detached, the vacuum pressure will drop, causing other workpieces to become detached. Therefore, the countermeasures listed below must be taken.

- · Adjust the needle valve to minimize the préssure fluctuation between adsorption and non-adsorption operations.
- · Provide a vacuum switching valve to each individual pad to minimize the influences on other pads if an adsorption error occurs.

Ideally, one pad should be used for each line.

vacuum line, take the countermeasures listed below · Adjust the needle valve to minimize the

pressure fluctuation between adsorption and non-adsorption operation. • Include a tank and a vacuum pressure

other pads if an adsorption error occurs.

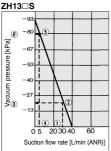
reduction valve (vacuum pressure regulator valve) to stabilize the source pressure. · Provide a vacuum switching valve to each individual pad to minimize the influences on

**Ø**SMC

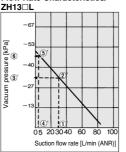
ZP3

ZP3E ZP2

ZP2V 7P


#### Vacuum Ejector Selection and Handling Precautions

#### **Ejector Selection**

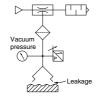

There are 2 types of ejector flow rate characteristics: the high vacuum type (S type) and the high flow type (L type).

During the selection, pay particular attention to the vacuum pressure when adsorbing workpieces that leak.

# High Vacuum Type Flow Rate Characteristics/



# High Flow Type Flow Rate Characteristics/

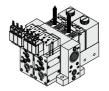


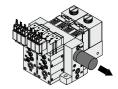

The vacuum pressure varies in accordance with the leakage volumes indicated in the above diagrams.

If the leakage volume is 30 L/min (ANR), the vacuum pressure of the S type is  $-20~\text{kPa}~\vec{1}\rightarrow \vec{2}\rightarrow \vec{3}$ , and for the L type it is  $-33~\text{kPa}~\vec{1})\rightarrow \vec{2})\rightarrow \vec{3}$ . If the leakage volume is 5 L/min (ANR), the vacuum pressure of the S type is  $-80~\text{kPa}~\vec{4}\rightarrow \vec{5}\rightarrow \vec{6}$ , and for the L type it is  $-47~\text{kPa}~\vec{4})\rightarrow \vec{5}\rightarrow \vec{6}$ . Thus, if the leakage volume is 30 L/min (ANR) the L type can attain a higher vacuum pressure, and if the leakage volume is 5 L/min (ANR), the S type can attain a higher vacuum pressure.

Thus, during the selection process, make sure to take the flow rate characteristics of the high vacuum type (5 type) and the high flow type (L type) into consideration in order to select the type that is optimal for your application.

#### Ejector Nozzle Diameter Selection





If a considerable amount of leakage occurs between the workpiece and the pad, resulting in incomplete adsorption, or to shorten the adsorption and transfer time, select an ejector nozzle with a larger diameter from the ZH, ZR, or ZL series.

#### Manifold Use

#### Individual exhaust

#### Centralized exhaust





If there are a large number of ejectors that are linked on a manifold and operate simultaneously, use the built-in silencer type or the port exhaust type.

If there are a large number of ejectors that are linked on a manifold, which exhaust collectively, install a silencer at both ends. If the exhaust must be discharged outdoors through piping, make the diameter of the piping larger to control its back pressure to 5 kPa or less so that the back pressure will not affect the operation of the ejectors.

• If the vacuum ejector makes an intermittent noise (abnormal noise) from exhaust at a certain supply pressure, the vacuum pressure will not be stable. It will not be any problem if the vacuum ejector is used under this condition. However, if the noise is disturbing or might affect the operation of the vacuum pressure switch, lower or raise supply pressure a little at a time, and use in an air pressure range that does not produce the intermittent noise.

#### Supply Pressure of Vacuum Ejector

• It is recommended to use the vacuum ejector at the standard supply pressure.

The maximum vacuum pressure and suction flow rate can be obtained when the vacuum ejector is used at the standard supply pressure, and as a result, adsorption response time also improves. From the viewpoint of energy-saving, it is the most effective to use the ejector at the standard supply pressure. Since using it at an excessive supply pressure may cause the ejector performance to lower, it is recommended to use at the standard supply pressure.

#### Timing for Vacuum Generation and Suction Verification

#### A. Timing for Vacuum Generation

The time for opening/closing the valve will be counted if a vacuum is generated after the adsorption pad descends to adsorb a workpiece. Also, there is a timing delay risk for the generating vacuum since the operational pattern for the verification switch, which is used for detecting the descending vacuum pad, is not even.

To solve this issue, we recommend that vacuum be generated in advance, before the vacuum pad begins to descend to the workpiece. Adopt this method after confirming that there will be no misalignment resulting from the workpiece's light mass.

#### B. Suction Verification

When lifting the vacuum pad after adsorbing a workpiece, confirm that there is a suction verification signal from the vacuum pressure switch, before the vacuum pad is lifted. If the vacuum pad is lifted, based on the timing of a timer etc., there is a risk that the workpiece may be left behind.

In general adsorption transfer, the time for adsorbing a workpiece is slightly different since the position of the vacuum pad and the workpiece are different after every operation. Therefore, program a sequence in which the suction completion is verified by a vacuum pressure switch etc., before moving to the next operation.



#### C. Set Pressure for Vacuum Pressure Switch

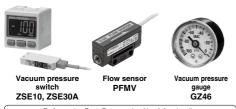
Set the optimum value after calculating the required vacuum pressure for lifting a workpiece.

If a higher pressure than required is set, there is a possibility of being unable to confirm the suction even though the workpiece is adsorbed. This will result in a suction error.

When setting vacuum pressure switch set values, you should set using a lower pressure, with which a workpiece can be adsorbed, only after considering the acceleration or vibration when a workpiece is transferred. The set value of the vacuum pressure switch shortens the time to lift a workpiece. Since the switch detects whether the workpiece is lifted or not, the pressure must be set high enough to detect it.

#### Vacuum Pressure Switch (ZSE series), Flow sensor (PFMV series), Vacuum Pressure Gauge (GZ series)

When adsorbing and transferring a workpiece, verify at the vacuum pressure switch as much as possible (In addition, visually verify the vacuum gauge, especially when handling a heavy or a hazardous item.).


#### Approx. Ø1 adsorption nozzle

The difference in pressure between ON and OFF becomes small depending on the capacity of the ejector and vacuum pump.

In such a case, it is necessary to use the digital pressure switch ZSE10 or ZSE30A with a fine smallest settable increment or a flow switch for flow rate detection.

Note) • A vacuum generator with a large suction capacity will not be detected properly, so an ejector with an appropriate capacity must be selected.

 Since the hysteresis is small, vacuum pressure must be stabilized.



Refer to the Best Pneumatics No. 8 for details.

#### Timing Chart Example **During suction** During vacuum release Cylinder UP Cylinder DOWN Cylinder switch Supply valve V port vacuum By lowering the pressure etting of the Atmospheric vacuum switch, the nressure takt time can be Vacuum pressure hortened switch set value Vacuum pressure at operation Vacuum re switch

#### Dust Handling of Vacuum Equipment

- When the vacuum equipment is used, not only the workpiece, but also dust in the surrounding environment is taken in the equipment. Preventing the intrusion of dust is required more than for any other pneumatic equipment. Some of SMC's vacuum equipment comes with a filter, but when there is a large amount of dust, an additional filter must be installed.
- When vaporized materials such as oil or adhesive are sucked into the equipment, they accumulate inside, which may cause problems.
- It is important to prevent dust from entering the vacuum equipment as much as possible.
- (1) Make sure to keep the working environment and surrounding area of the workpiece clean so that dust will not be sucked in the equipment.
- (2) Check the amount and types of dust before using the equipment and install a filter etc., in the piping when necessary.
- (3) Conduct a test and make sure that operating conditions are cleared before using the equipment.
- (4) Perform filter maintenance depending on the amount of dirt.
- (5) Filter clogging generates a pressure difference between the adsorption and ejector parts. This requires attention, since clogging can prevent proper adsorption from being achieved.

#### Air Suction Filter (ZFA, ZFB, ZFC series)

- To protect the switching valve and the ejector from becoming clogged, a suction filter in the vacuum circuit is recommended.
- When using an ejector in a dusty environment, the unit's filter will become clogged quickly, so it is recommended that the ZFA, ZFB or ZFC series be used concurrently.

#### Vacuum Line Equipment Selection

Determine the volume of the suction filter and the conductance of the switching valve in accordance with the maximum suction flow rate of the ejector and the vacuum pump. Make sure that the conductance is greater than the value that has been obtained through the formula given below. (If the devices are connected in series in the vacuum line, their conductances must be combined.)

$$C = \frac{Q_{\text{max}}}{55.5}$$

C: Conductance [dm³/(s·bar)]

Qmax: Max. suction flow rate [L/min (ANR)]



ZP3

ZP3E

ZP2V

ΖP

ZPT

ZPR XT661

#### 7 Vacuum Equipment Selection Example

#### Transfer of Semiconductor Chips

#### Selection conditions:

(1) Workpiece: Semiconductor chips

Dimensions: 8 mm x 8 mm x 1 mm, Mass: 1 g

(2) Vacuum piping length: 1 m

(3) Adsorption response time: 300 msec or less

#### 1. Vacuum Pad Selection

- (1) Based on the workpiece size, the pad diameter is 4 mm (1 pc.).
- (2) Using the formula on page 385, check the lifting force.

$$\begin{aligned} \mathbf{W} &= \mathbf{P} \times \mathbf{S} \times 0.1 \times 1/t \\ 0.0098 &= \mathbf{P} \times 0.13 \times 0.1 \times 1/4 \\ \mathbf{P} &= 3.0 \text{ kPa} \end{aligned} \qquad \begin{aligned} \mathbf{W} &= 1 \text{ g} = 0.0098 \text{ N} \\ \mathbf{S} &= \pi/4 \times (0.4)^2 = 0.13 \text{ cm}^2 \\ \mathbf{t} &= 4 \text{ (Horizontal lifting)} \end{aligned}$$

According to the calculation, -3.0 kPa or more of vacuum pressure can adsorb the workpiece.

(3) Based on the workpiece shape and type, select:

Pad type: Flat type with groove Pad material: Silicone rubber

(4) According to the results above, select a vacuum pad part number ZP3-04UMS.

#### 2. Vacuum Ejector Selection

(1) Find the vacuum piping capacity.

Assuming that the tube I.D. is 2 mm, the piping capacity is as follows:

$$V = \pi/4 \ x \ D^2 \ x \ L \ x \ 1/1000 = \pi/4 \ x \ 2^2 \ x \ 1 \ x \ 1/1000 = 0.0031 \ L$$

(2) Assuming that leakage (QL) during adsorption is 0, find the average suction flow rate to meet the adsorption response time using the formula on page 392.

$$Q = (V \times 60) / T_1 + Q_L = (0.0031 \times 60) / 0.3 + 0 = 0.62 L$$

From the formula on page 392, the maximum suction flow rate Qmax is

$$Q_{max} = (2 \text{ to } 3) \text{ x } Q = (2 \text{ to } 3) \text{ x } 0.62$$
  
= 1.24 to 1.86 L/min (ANR)

According to the maximum suction flow rate of the vacuum ejector, a nozzle with a 0.5 diameter can be used.

If the vacuum ejector ZX series is used, representative model ZX105□ can be selected.

(Based on the operating conditions, specify the complete part number for the vacuum ejector used.)

#### 3. Adsorption Response Time Confirmation

Confirm the adsorption response time based on the characteristics of the vacuum ejector selected.

(1) The maximum suction flow rate of the vacuum ejector ZX105□ is 5 L/min (ANR).

From the formula on page 393, the average suction flow rate Q1 is as follows:

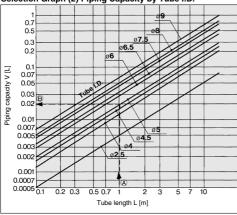
(2) Next, find the maximum flow rate Q2 of the piping. The conductance C is 0.22 from the Selection Graph (3). From the formula on page 393, the maximum flow rate is as follows:

$$Q_2 = C \times 55.5 = 0.22 \times 55.5 = 12.2 L/min (ANR)$$

(3) Since Q2 is smaller than Q1, Q = Q1.

Thus, from the formula on page 393, the adsorption response time is as follows:

$$T = (V \times 60)/Q = (0.0031 \times 60)/1.7 = 0.109$$
 seconds


It is possible to confirm that the calculation result satisfies the required specification of 300 msec.

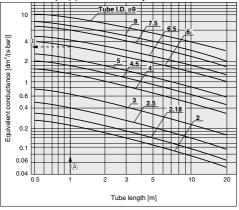


#### 8 Data

#### Selection Graph

Selection Graph (2) Piping Capacity by Tube I.D.




#### How to read the graph

Example: For obtaining the capacity of tube I.D. ø5 and 1 meter length

#### <Selection Procedure>

By extending leftward from the point at which the 1 meter tube length on the horizontal axis intersects the line for a tube I.D. ø5, the piping capacity approximately equivalent to 0.02 L can be obtained on the vertical axis. Piping capacity = 0.02 L

#### Selection Graph (3) Conductance by Tube I.D.



#### How to read the graph

Example: Tube size Ø8/Ø6 and 1 meter length

#### <Selection Procedure>

By extending leftward from the point at which the 1 meter tube length on the horizontal axis intersects the line for a tube I.D. ø6, the equivalent conductance approximately 3.6 dm³/(s-bar) can be obtained on the vertical axis.

Equivalent conductance ≈ 3.6 dm³/(s·bar)

ZP3

ZP3E ZP2

ZP2V

ZP

#### Glossary of Terms

| Terms                     | Description                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| (Max.) suction flow rate  | Volume of air taken in by the ejector. The maximum value is the volume of air taken in without having anything connected to the vacuum port.                                                                                                                                                                                                                 |  |  |  |  |  |  |
| Maximum vacuum pressure   | The maximum value of the vacuum pressure generated by the ejector                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Air consumption           | The compressed volume of air consumed by the ejector                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| Standard supply pressure  | ply pressure The optimal supply pressure for operating the ejector                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Exhaust characteristics   | The relationship between the vacuum pressure and the suction flow rate when the supply pressure to the ejector has been changed.                                                                                                                                                                                                                             |  |  |  |  |  |  |
| Flow rate characteristics | The relationship between the vacuum pressure and the suction flow rate with the standard suppressure supplied to the ejector.                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Vacuum pressure switch    | Pressure switch for verifying the adsorption of a workpiece                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| (Air) supply valve        | Valve for supplying compressed air to the ejector                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| (Vacuum) release valve    | Valve for supplying positive pressure or air for breaking the vacuum state of the adsorption pad                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| Flow adjustment valve     | Valve for adjusting the volume of air for breaking the vacuum                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Pilot pressure            | Pressure for operating the ejector valve                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| External release          | The action of breaking the vacuum using externally supplied air instead of using the ejector unit                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Vacuum port               | Port for generating vacuum                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Exhaust port              | Port for exhausting air consumed by the ejector, and air taken in from the vacuum port.                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Supply port               | Port for supplying air to the ejector                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Back pressure             | Pressure inside the exhaust port                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| Leakage                   | The entry of air into the vacuum passage, such as from an area between a workpiece and a pad, or between a fitting and a tube. The vacuum pressure decreases when leakage occurs.                                                                                                                                                                            |  |  |  |  |  |  |
| Response time             | The time from the application of the rated voltage to the supply valve or release valve, until V port pressure reaches the specified pressure.                                                                                                                                                                                                               |  |  |  |  |  |  |
| Average suction flow rate | The suction flow rate by the ejector or pump for calculating the response speed. It is 1/2 to 1/3 of the maximum suction flow rate.                                                                                                                                                                                                                          |  |  |  |  |  |  |
| Conductive pad            | A low electrical resistance pad for electrostatic prevention measure                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| Vacuum pressure           | Any pressure below the atmospheric pressure. When the atmospheric pressure is used as a reference, the pressure is represented by –kPa (G), and when the absolute pressure is used as a reference, the pressure is represented by kPa (abs). When referencing a piece of vacuum equipment such as an ejector, the pressure is generally represented by –kPa. |  |  |  |  |  |  |
| Ejector                   | A unit for generating vacuum by discharging the compressed air from a nozzle at a high speed, based on the phenomenon in which the pressure is reduced when the air around the nozzle is sucked.                                                                                                                                                             |  |  |  |  |  |  |
| Air suction filter        | Vacuum filter provided in the vacuum passage for preventing the dust intrusion into the ejector, vacuum pump, or peripheral equipment                                                                                                                                                                                                                        |  |  |  |  |  |  |

#### ● Countermeasures for Vacuum Adsorption System Problems (Troubleshooting)

| Condition & Description of improvement                    | Contributing factor                                                                       | Countermeasure                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Initial adsorption<br>problem<br>(During trial operation) | Adsorption area is small.<br>(Lifting force is lower than the<br>workpiece mass.)         | Recheck the relationship between workpiece mass and lifting force.  • Use a vacuum pad with a large adsorption area. • Increase the quantity of vacuum pads.                                                                                                             |
|                                                           | Vacuum pressure is low.<br>(Leakage from adsorption surface)<br>(Air permeable workpiece) | Eliminate (reduce) leakage from adsorption surface.  • Reconsider the shape of a vacuum pad. Check the relationship between suction flow rate and arrival pressure of vacuum ejector.  • Use a vacuum ejector with a high suction flow rate. • Increase adsorption area. |
|                                                           | Vacuum pressure is low.<br>(Leakage from vacuum piping)                                   | Repair leakage point.                                                                                                                                                                                                                                                    |
|                                                           | Internal volume of vacuum circuit is large.                                               | Check the relationship between internal volume of the vacuum circuit and suction flow rate of the vacuum ejector.  • Reduce internal volume of the vacuum circuit.  • Use a vacuum ejector with a high suction flow rate.                                                |



| Contributing factor                                                                                                                                                                                     | Countermeasure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Pressure drop of vacuum piping is large.                                                                                                                                                                | Reconsider vacuum piping.  • Use a shorter or larger tube (with appropriate diameter).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Inadequate supply pressure of vacuum ejector                                                                                                                                                            | Measure supply pressure in vacuum generation state.  • Use standard supply pressure.  • Reconsider compressed air circuit (line).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Clogging of nozzle or diffuser<br>(Infiltration of foreign matter<br>during piping)                                                                                                                     | Remove foreign matter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Supply valve (switching valve) is not being activated.                                                                                                                                                  | Measure supply voltage at the solenoid valve with a tester.  • Reconsider electric circuits, wiring and connectors.  • Use in the rated voltage range.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Workpiece deforms during adsorption.                                                                                                                                                                    | Since a workpiece is thin, it deforms and leakage occurs.  • Use a pad for adsorption of thin objects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Internal volume of vacuum circuit is large.                                                                                                                                                             | Check the relationship between internal volume of the vacuum circuit and suction flow rate of the vacuum ejector.  • Reduce internal volume of the vacuum circuit.  • Use a vacuum ejector with a high suction flow rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Pressure drop of vacuum piping is large.                                                                                                                                                                | Reconsider vacuum piping.  • Use a shorter or larger tube (with appropriate diameter).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Using the product as close to the<br>highest vacuum power in the<br>specifications.                                                                                                                     | Set vacuum pressure to minimum necessary value by optimizing the pad diameter etc.  As the vacuum power of an ejector (venturi) rises, the vacuum flow actually lowers. When an ejector is used at its highest possible vacuum value, the vacuum flow will lower. Due to this, the amount of time needed to achieve adsorption is lengthened. One should consider an increase in the diameter of the ejector nozzle or an increase the size of the vacuum pad utilized in order to lower the required vacuum pressure, maximum the vacuum flow, and speed up the adsorption process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Setting of vacuum pressure switch is too high.                                                                                                                                                          | Set to suitable setting pressure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Fluctuation in supply pressure                                                                                                                                                                          | Reconsider compressed air circuit (line). (Addition of a tank etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Vacuum pressure may fluctuate<br>under certain conditions due to<br>ejector characteristics.                                                                                                            | Lower or raise supply pressure a little at a time, and use in a supply pressure range where vacuum pressure does not fluctuate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Intermittent noise may occur<br>under certain conditions due to<br>ejector characteristics.                                                                                                             | Lower or raise supply pressure a little at a time, and use in a supply pressure range where the intermittent noise does not occur.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Exhaust air from the ejector enters the vacuum port of another ejector that is stopped.                                                                                                                 | Use a vacuum ejector with a check valve. (Please contact SMC for the part number of an ejector with a check valve.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Clogging of suction filter                                                                                                                                                                              | Replace filters. Improve installation environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Clogging of sound absorbing material                                                                                                                                                                    | Replace sound absorbing materials. Add a filter to supply (compressed) air circuit. Install an additional suction filter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Clogging of nozzle or diffuser                                                                                                                                                                          | Remove foreign matter. Add a filter to supply (compressed) air circuit. Install an additional suction filter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Vacuum pad (rubber) deterioration, cracking, etc.                                                                                                                                                       | Replace vacuum pads. Check the compatibility of vacuum pad material and workpiece.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Inadequate release flow rate                                                                                                                                                                            | Open release flow adjustment needle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Vacuum pressure is high.<br>Excessive force (adhesiveness of<br>the rubber + vacuum pressure) is<br>applied to the pad (rubber part).                                                                   | Reduce the vacuum pressure. If inadequate lifting force causes a problem in transferring the workpieces, increase the number of pads.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Effects due to static electricity                                                                                                                                                                       | Use a conductive pad.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Adhesiveness of the rubber increases due to the operating environment or wearing of the pad.  • Adhesiveness of the rubber material is high.  • Adhesiveness increases due to wearing of the vacuum pad | Replace pads.  Replace pads.  Reponsider the pad material and check the compatibility of pad material and workpiece.  Reconsider the pad form.  (Changes to rib, groove, blast options)  Reconsider the pad diameter and quantity of pads.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                                                                                                                                                                                                         | Pressure drop of vacuum piping is large.  Inadequate supply pressure of vacuum ejector  Clogging of nozzle or diffuser (Infiltration of foreign matter during piping)  Supply valve (switching valve) is not being activated.  Workpiece deforms during adsorption.  Internal volume of vacuum circuit is large.  Pressure drop of vacuum piping is large.  Using the product as close to the highest vacuum power in the specifications.  Setting of vacuum pressure switch is too high.  Fluctuation in supply pressure  Vacuum pressure may fluctuate under certain conditions due to ejector characteristics.  Intermittent noise may occur under certain conditions due to ejector characteristics.  Exhaust air from the ejector enters the vacuum port of another ejector that is stopped.  Clogging of suction filter  Clogging of sound absorbing material  Clogging of nozzle or diffuser  Vacuum pad (rubber) deterioration, cracking, etc.  Inadequate release flow rate  Vacuum pressure is high.  Excessive force (adhesiveness of the rubber + vacuum pressure) is applied to the pad (fubber part).  Effects due to static electricity  Adhesiveness of the rubber increases due to the operating environment or wearing of the pad.  Adhesiveness increases due to the other waterial is high. |  |  |  |  |

**SWC** 

ZP3

ZP3E ZP2

ZP2V

ZP

ZPT ZPR XT661

....

## ● Non-conformance Examples

| Phenomenon                                                                                                                 | Possible causes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Countermeasure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No problem occurs during the test, but adsorption becomes unstable after starting operation.                               | Setting of the vacuum switch is not appropriate. Supply pressure is unstable. Vacuum pressure does not reach the set pressure.      There is leakage between the workpiece and the vacuum pad.                                                                                                                                                                                                                                                                                                                                                              | Set the pressure for the vacuum equipment (supply pressure, if using an ejector) to the necessary vacuum pressure during the adsorption of the workpieces. And set the set pressure for the vacuum switch to the necessary vacuum pressure for adsorption.      It is presumed that there was leakage during the test, but it was not serious enough to prevent adsorption. Reconsider the vacuum ejector and the shape, diameter, and material of the vacuum pad. Reconsider the vacuum pad. |
| Adsorption becomes unstable after replacing the pad.                                                                       | Initial setting conditions (vacuum pressure, vacuum switch setting, height of the pad) have changed. Settings have changed because the pad was worn out or had permanent setting due to the operating environment.     When the pad was replaced, leakage was generated from the screw connection part, or the engagement between the pad and the adapter.                                                                                                                                                                                                  | Reconsider the operating conditions including vacuum pressure, the set pressure of the vacuum switch, and the height of the pad.     Reconsider the engagement.                                                                                                                                                                                                                                                                                                                               |
| Identical pads are used to adsorb identical workpieces, but some of the pads cannot adsorb the workpieces.                 | There is leakage between the workpiece and the vacuum pad. The supply circuit for the cylinder, the solenoid valve and the ejector is in the same pneumatic circuit system. The supply pressure decreases when they are used simultaneously. (Vacuum pressure does not increase.) There is leakage from the screw connection part or the engagement between the pad and the adapter.                                                                                                                                                                        | Reconsider the pad diameter, shape, material, vacuum ejector (suction flow rate), etc.     Reconsider the pneumatic circuit.     Reconsider the engagement.                                                                                                                                                                                                                                                                                                                                   |
| Generation of sticking of<br>bellows of the bellows pad<br>and/or recovery delays.<br>(It may occur at an early<br>stage.) | When the vacuum pad (bellows type) reaches the end of its life, weakening of bent parts, wearing, or sticking of rubber parts occurs.                                                                                                                                                                                                                                                                                                                                                                                                                       | The operating conditions will determine the product life. Inspect it sufficiently and determine the replacement time.  • Replace pads.  • Reconsider the diameter, form, and material of vacuum pads.  • Reconsider the quantity of vacuum pads.                                                                                                                                                                                                                                              |
|                                                                                                                            | Vacuum pressure is higher than necessary,<br>so excessive force (adhesiveness of the<br>rubber + vacuum pressure) is applied to<br>the pad (rubber part).                                                                                                                                                                                                                                                                                                                                                                                                   | Reduce the vacuum pressure. If inadequate lifting force causes a problem in transferring the workpieces due to the reduction of vacuum pressure, increase the number of pads.                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                            | Load is applied to the bellows due to the following operations, leading to sticking of rubber parts or reduction of the pad recovery performance.  • Pushing exceeding pad displacement (operating range), external load.  • Workpiece holding/waiting Waiting 10 seconds or more while the workpiece is being held  * Even when under 10 seconds, pads sticking or a recovery delay issues may occur earlier depending on the operating environment and operating method. Longer workpiece holding times lead to longer recovery times and a shorter life. | Reduce the load applied to the pad. Review the equipment so that an external load exceeding the pad displacement (operating range) is not applied. Avoid workpiece holding and waiting. The operating conditions will determine the product life. Inspect it and determine the replacement time.                                                                                                                                                                                              |
| The product life is shortened after replacement of the product (pad, buffer, etc.).                                        | The settings of the product changed. Ube had been pulled. Unbalanced load in clockwise direction increased. The transfer speed increased. The workpiece to be transferred was changed. (Shape, center of gravity, weight, etc.) The mounting orientation was at an angle. The operating environment changed. The buffer (mounting nut) was not tightened with the appropriate torque.                                                                                                                                                                       | If the problem (cannot adsorb) does not occur when starting operation, the product may reach the end of its life due to the customer's specification conditions. Reconsider the piping and operation (specifications). The selected model may not be appropriate for the current workpiece to be transferred or the specifications. Select the product model again by reconsidering the pad shape, diameter, quantity, and suction balance.                                                   |
| Pad comes out from the adapter during operation. Cracks are generated on the pad.                                          | Load is applied to the pad (rubber part) due to the following factors.  • Inadequate lifting force • Incorrect suction balance • Loads due to transfer acceleration are not considered when selecting the product model.                                                                                                                                                                                                                                                                                                                                    | The selected model may not be appropriate for the current workpiece to be transferred or the specifications.  Select the product model again by reconsidering the pad shape, diameter, quantity, and suction balance.                                                                                                                                                                                                                                                                         |



| Phenomenon                                                      | Possible causes                                                                                                                                                                                 | Countermeasure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cracks are generated on                                         | The product is operated in an ozone envi-                                                                                                                                                       | Reconsider the operating environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| the rubber (NBR, conduc-                                        | ronment.                                                                                                                                                                                        | Reconsider the materials to be used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| tive NBR).                                                      | An ionizer is used.                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                 | * This phenomenon occurs earlier if<br>pushing or the high vacuum pressure is<br>used.                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Even when a mark-free                                           | If the pad adsorbs a highly clean work-                                                                                                                                                         | Use the following products.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| pad is used, the pad end wears out quickly. (Suction            | piece, slippage is minimized, and a load (impact) is applied to the pad end.                                                                                                                    | Stuck fluororesin pad     Clean attachment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| marks are generated.)                                           | (impact) is applied to the pad end.                                                                                                                                                             | - Glean attachment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Even when a mark-free pad is used, suction marks are generated. | Incorrect application (The mark was generated due to a deformation.)     Contamination (insufficient cleaning) on the pad when installing the equipment, dust in the operating environment etc. | Check the mark generated on the workpiece.  1) Mark due to deformed (lined) workpiece Reconsider the pad diameter, form, material, vacuum ejector (suction flow rate), etc.  2) Mark due to worn rubber Reconsider the pad diameter, form, material, vacuum ejector (suction flow rate), etc.  3) Mark generated by moving components If the suction mark disappears or becomes smaller after wiping with cloth or waste cloth (without using solu- tions), clean the pad as it may have been contaminated. Refer to "Cleaning method (Mark-free NBR pad)" on page 12 of this catalog. |

# ■When mounted with the nut, sometimes the buffer operation is not smooth, or the buffer does not slide.

#### [Possible causes]

- The tightening torque of the nut for mounting the buffer is too high.
- · Particles stuck to the sliding surface, or it is scratched.
- · Lateral load applied to the piston rod, causing eccentric wearing.

#### [Remedy]

Tighten the nut to the recommended tightening torque.

The nut may become loose depending on the operating conditions and environment. Be sure to perform regular maintenance.

#### **Recommended Tightening Torque**

| necommended rightening resides |                                                    |               |                   |  |  |  |  |  |  |
|--------------------------------|----------------------------------------------------|---------------|-------------------|--|--|--|--|--|--|
|                                | Product specifications                             |               | Tightening torque |  |  |  |  |  |  |
| Pad diameter                   | Pad diameter Product part no. Mounting thread size |               |                   |  |  |  |  |  |  |
| ø <b>32</b> to ø <b>50</b>     | ZP3E-(T/Y)(32 to 50)(UM/BM)**JB■■                  | M18 x 1.5     | 28 to 32          |  |  |  |  |  |  |
| 032 10 030                     | ZP3E-(T/Y)F(32 to 50)(UM/BM)**JB■■                 | C.I X BIIW    | 28 10 32          |  |  |  |  |  |  |
| -60105                         | ZP3E-(T/Y)(63 to 125)(UM/BM)**JB■■                 | M22 x 1.5     | 45 to 50          |  |  |  |  |  |  |
| ø <b>63</b> to ø <b>125</b>    | ZP3E-(T/Y)F(63 to 125)(UM/BM)**JB■■                | 1 IVIZZ X 1.5 | 45 10 50          |  |  |  |  |  |  |

#### ● Time of Replacement of Vacuum Pad

#### The vacuum pad is disposable. Replace it on a regular basis.

Continued use of the vacuum pad will cause wear and tear on the adsorption surface, and the exterior dimensions will gradually get smaller and smaller. As the pad diameter gets smaller, lifting force will decrease, though adsorption is possible. It is extremely difficult to provide advice on the frequency of vacuum pad exchange. This is because there are numerous factors at work, including surface roughness, operating environment (temperature, humidity, ozone, solvents, etc.), and operating conditions (vacuum pressure, workpiece weight, pressing force of the vacuum pad on the workpiece, presence or absence of a buffer, etc.).

(Weakening of bent parts, wear, or sticking of rubber parts may occur with the bellows type pad.)

Thus, the customer should decide when the vacuum pad should be exchanged, based on its condition at time of initial use.

The bolt may become loose depending on the operating conditions and environment. Be sure to perform regular maintenance.

ZP3E

ZP2

ZP

ZPT ZPR



# Flat Type Pad/Bellows Type Pad with Groove

Pad diameter

Ø32, Ø40, Ø50, Ø63, Ø80, Ø100, Ø125

Symbol/Form

UM: Flat type with groove

BM: Bellows type with groove

#### **How to Order**

Pad unit ZP3E - 32 UM N - P



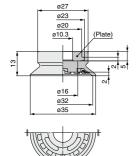
Pad form Symbol Form UM Flat type with groove BM Bellows type with groove

| Plate | <b>(★</b> ) |
|-------|-------------|
| Nil   | None        |
| Р     | With plate  |

Pad material

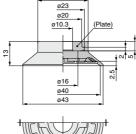
| T da matema |                 |  |  |  |  |  |  |
|-------------|-----------------|--|--|--|--|--|--|
| Symbol      | Material        |  |  |  |  |  |  |
| N           | NBR             |  |  |  |  |  |  |
| S           | Silicone rubber |  |  |  |  |  |  |
| U           | Urethane rubber |  |  |  |  |  |  |
| F           | FKM             |  |  |  |  |  |  |
| CL          | Mark-free NBR   |  |  |  |  |  |  |

Plate Unit Part No


| riate Offit Fait No. |    |                            |    |    |    |     |                               |    |    |    |    |    |     |     |
|----------------------|----|----------------------------|----|----|----|-----|-------------------------------|----|----|----|----|----|-----|-----|
| Form/Diameter        | ı  | Flat type with groove (UM) |    |    |    |     | Bellows type with groove (BM) |    |    |    |    |    |     |     |
| Model                | 32 | 40                         | 50 | 63 | 80 | 100 | 125                           | 32 | 40 | 50 | 63 | 80 | 100 | 125 |
| ZP3EA-P1             | •  | •                          | _  | _  | _  | _   | _                             | •  | •  | _  | _  | _  | _   | _   |
| ZP3EA-P2             | _  | _                          | •  | _  | _  | _   | _                             | _  | _  | •  | _  | _  | _   | _   |
| ZP3EA-P3             | _  | _                          | _  | •  | •  | _   | _                             | _  | _  | _  | •  | _  | _   | _   |
| ZP3EA-P4             | _  | _                          | _  | _  | _  | •   | _                             | _  | _  | _  | _  | •  | _   | _   |
| ZP3EA-P5             | _  | _                          | _  | _  | _  | _   | •                             | _  | _  | _  | _  | _  | •   | _   |
| ZP3EA-P6             | _  | _                          | _  | _  | _  | _   | _                             | _  | _  | _  | _  | _  | _   | •   |

**Dimensions: Pad Unit** 

Pad diameter ø32 to ø50 Pad form Flat type with groove




#### ZP3E-32UM□-★



| Weights               |        |     |      |  |  |  |  |  |
|-----------------------|--------|-----|------|--|--|--|--|--|
| Pad material<br>Model | N/U/CL | s   | F    |  |  |  |  |  |
| ZP3E-32UM□            | 4.2    | 3.9 | 6.7  |  |  |  |  |  |
| ZP3E-32UM□-P          | 7.9    | 7.6 | 10.4 |  |  |  |  |  |


### ZP3E-40UM□-★ ø27



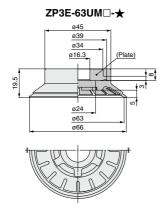


| Weights               |        |     | [g   |
|-----------------------|--------|-----|------|
| Pad material<br>Model | N/U/CL | s   | F    |
| ZP3E-40UM□            | 5.3    | 4.9 | 8.4  |
| ZP3E-40UM□-P          | 9.0    | 8.5 | 12.1 |

#### ZP3E-50UM□-★





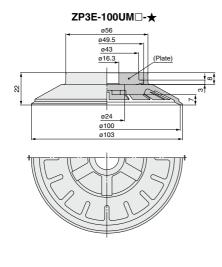

| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-50UM□            | 9.4    | 8.7  | 14.9 |
| ZP3E-50UM□-P          | 17.1   | 16.3 | 22.5 |
| •                     |        |      |      |

# Pad Unit **ZP3E** Series

Pad diameter Ø63 to Ø125
Pad form Flat type with groove








|      | ZP3E-80UM□-★         |
|------|----------------------|
|      | ø45                  |
|      | ø39<br>-             |
|      | Ø34<br>Ø16.3 (Plate) |
|      | Ø16.3 (Plate)        |
|      | 100                  |
| 19.5 |                      |
|      | ø24                  |
|      | Ø80                  |
|      | ø83                  |
|      |                      |
| 1    |                      |
|      |                      |
|      | +                    |

| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-63UM□            | 18.2   | 16.7 | 28.8 |
| ZP3E-63UM□-P          | 35.9   | 34.4 | 46.5 |

| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-80UM□            | 26.4   | 24.3 | 41.9 |
| ZP3E-80UM□-P          | 44.1   | 42.0 | 59.6 |
|                       |        |      |      |

**ZP3E-125UM**□-★



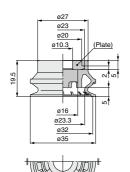
| 22 | e65<br>e58<br>e16.3<br>(Plate)<br>e24<br>e125<br>e125 |
|----|-------------------------------------------------------|
| 4  | 0128                                                  |
|    |                                                       |

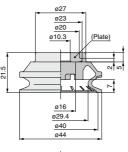
| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-100UM□           | 44.7   | 40.9 | 70.7 |
| ZP3E-100UM□-P         | 75.8   | 72.0 | 102  |

| Weights               |        |      | [g] |
|-----------------------|--------|------|-----|
| Pad material<br>Model | N/U/CL | s    | F   |
| ZP3E-125UM□           | 79.3   | 72.7 | 126 |
| ZP3E-125UM□-P         | 140    | 134  | 187 |

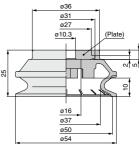
ZP3

ZP3E


ZP2 ZP2V ZP


# **ZP3E** Series

Pad diameter ø32 to ø80 Pad form **Dimensions: Pad Unit** 


Bellows type with groove

#### ZP3E-32BM□-★





# ZP3E-50BM□-★



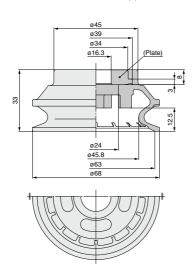


| Weights      |  |
|--------------|--|
| Pad material |  |

|                       |        |     | - 131 |
|-----------------------|--------|-----|-------|
| Pad material<br>Model | N/U/CL | s   | F     |
| ZP3E-32BM□            | 6.2    | 5.7 | 9.9   |
| ZP3E-32BM□-P          | 9.9    | 9.4 | 13.6  |

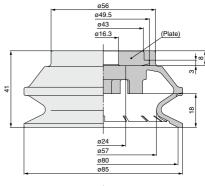
Weights

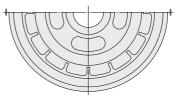
[a]


| Pad material<br>Model | N/U/CL | s    | F    |  |
|-----------------------|--------|------|------|--|
| ZP3E-40BM□            | 10.2   | 9.4  | 16.2 |  |
| ZP3F-40BM□-P          | 13.9   | 13.0 | 19.9 |  |

Weights

[a]


| Weights               |        |      |      |  |  |
|-----------------------|--------|------|------|--|--|
| Pad material<br>Model | N/U/CL | s    | F    |  |  |
| ZP3E-50BM□            | 17.9   | 16.4 | 28.4 |  |  |
| ZP3E-50BM□-P          | 25.5   | 24.0 | 36.0 |  |  |


#### ZP3E-63BM□-★



| Weights [g            |        |      |      |  |  |
|-----------------------|--------|------|------|--|--|
| Pad material<br>Model | N/U/CL | s    | F    |  |  |
| ZP3E-63BM□            | 34.8   | 31.9 | 55.1 |  |  |
| ZP3E-63BM□-P          | 52.5   | 49.6 | 72.8 |  |  |

#### ZP3E-80BM□-★

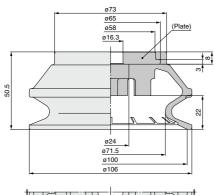


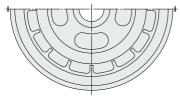


| Weig | hts |
|------|-----|
| _    |     |

| Pad material<br>Model | N/U/CL | s    | F    |
|-----------------------|--------|------|------|
| ZP3E-80BM□            | 60.2   | 55.2 | 95.3 |
| ZP3E-80BM□-P          | 91.3   | 86.3 | 126  |

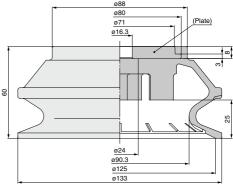
[a]

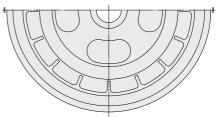

# Pad Unit **ZP3E** Series


Pad diameter Ø100, Ø125

Dimensions: Pad Unit Pad form Bellows type with groove








| Weights [g            |        |     |     |  |
|-----------------------|--------|-----|-----|--|
| Pad material<br>Model | N/U/CL | s   | F   |  |
| ZP3E-100BM□           | 125    | 114 | 197 |  |
| ZP3F-100BM□-P         | 186    | 175 | 258 |  |

ZP3E-125BM□-★





| Weights               |        |     |     |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-125BM□           | 235    | 216 | 372 |
| ZP3E-125BM□-P         | 329    | 310 | 466 |
|                       |        |     |     |

ZP3

ZP3E

ZP2V

ZP

ZPT ZPR XT661

#### **How to Order**



#### Vertical vacuum inlet With adapter

**ZP3E-T32UMN-A10** 

Vacuum inlet direction

| Symbol | Direction | T | Vertical |

#### Pad diameter

| Symbol | Pad diameter |
|--------|--------------|
| 32     | ø32          |
| 40     | ø40          |
| 50     | ø50          |
| 63     | ø63          |
| 80     | ø80          |
| 100    | ø100         |
| 125    | ø125         |

#### Pad form

| Symbol | Form                     |
|--------|--------------------------|
| UM     | Flat type with groove    |
| BM     | Bellows type with groove |

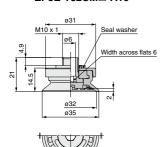
#### Mounting thread size

|      |                                                   | Symbol | Mounting    | ø <b>32</b> | ø <b>63</b> |
|------|---------------------------------------------------|--------|-------------|-------------|-------------|
|      |                                                   |        | Thread size | to ø50      | to ø125     |
| ad   | For direct                                        | A10    | M10 x 1     | •           | _           |
| hre  | For direct<br>mounting<br>For plate<br>connection | A16    | M16 x 1.5   | _           | •           |
| ē    | For plate                                         | AL14*  | M14 x 1     | •           | _           |
| ž    | connection                                        | AL16*  | M16 x 1.5   | _           | •           |
|      |                                                   | B8     | M8 x 1.25   | •           | _           |
| F    | emale                                             | B10    | M10 x 1.5   | •           | _           |
| thre | thread                                            | B12    | M12 x 1.75  |             | •           |
|      |                                                   | B18    | M18 x 1.5   | _           | •           |
|      |                                                   |        |             |             |             |

\* Male thread AL14/AL16 connection types have a vacuum exhaust (female thread) port separate from the mounting screw.

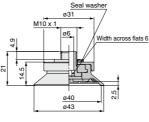
#### Pad material

| Symbol | Material        |
|--------|-----------------|
| N      | NBR             |
| S      | Silicone rubber |
| U      | Urethane rubber |
| F      | FKM             |
| CL     | Mark-free NBR   |


\* Refer to pages 471 and 472 for replacement parts.

# Dimensions/With Set Screw: Vacuum Inlet

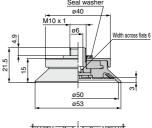





#### ZP3E-T32UM□-A10



| Weights               |        |      |      |  |  |
|-----------------------|--------|------|------|--|--|
| Pad material<br>Model | N/U/CL | s    | F    |  |  |
| ZP3E-T32UM□-A10       | 22.1   | 21.8 | 24.6 |  |  |


#### ZP3E-T40UM□-A10



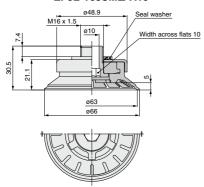


| Weights               |        |      | [9   |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-T40UM□-A10       | 23.2   | 22.7 | 26.2 |

#### ZP3E-T50UM□-A10

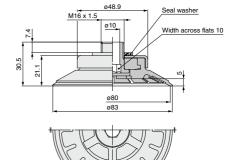





| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-T50UM□-A10       | 33.8   | 33.0 | 39.2 |

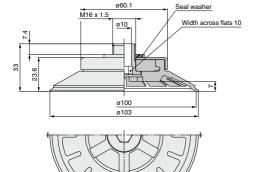
# Dimensions/With Set Screw: Vacuum Inlet





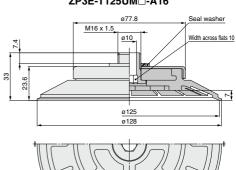






| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-T63UM□-A16       | 35.9   | 34.4 | 46.5 |

#### ZP3E-T80UM□-A16




| Wainhta               |        |      |      |
|-----------------------|--------|------|------|
| Weights               |        |      | [g]  |
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-T80UM□-A16       | 44.1   | 42.0 | 59.6 |

#### ZP3E-T100UM□-A16



| Weights               |        |      | [g] |
|-----------------------|--------|------|-----|
| Pad material<br>Model | N/U/CL | s    | F   |
| ZP3E-T100UM□-A16      | 75.8   | 72.0 | 102 |

#### ZP3E-T125UM□-A16

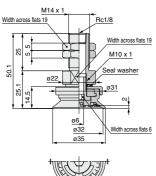


| ' // |
|------|
| //   |
|      |
|      |
|      |

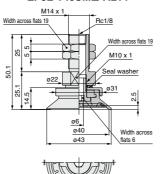
| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-T125UM□-A16      | 140    | 134 | 187 |

ZP3

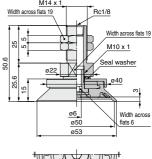
ZP3E ZP2 ZP2V ZP


# **ZP3E** Series










ZP3E-T40UM□-AL14

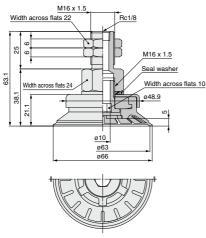






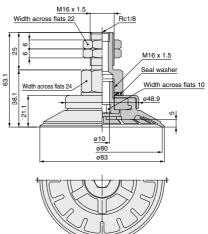


| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-T32UM□-AL14      | 49.1   | 48.8 | 51.6 |


| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-T40UM□-AL14      | 50.2   | 49.7 | 53.2 |

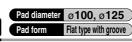
 Weights
 [g]

 Pad material Model
 N/U/CL
 S
 F

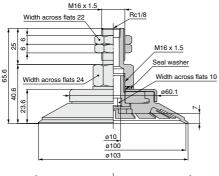

 ZP3E-T50UM□-AL14
 60.8
 60.0
 66.2

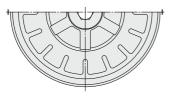
#### ZP3E-T63UM□-AL16




| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-T63UM□-AL16      | 199    | 198 | 210 |
|                       |        |     |     |

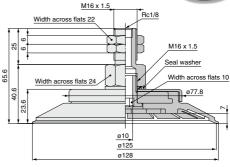
#### ZP3E-T80UM□-AL16

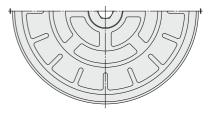




| Weights               |        |     | [g  |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-T80UM□-AL16      | 208    | 206 | 223 |
|                       |        |     |     |






#### ZP3E-T100UM□-AL16






| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3F-T100UM□-AL16     | 254    | 250 | 280 |

#### ZP3E-T125UM□-AL16





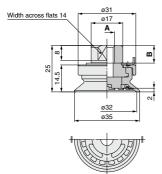
| Weights               |        |     | [g  |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-T125UM□-AL16     | 347    | 341 | 394 |
|                       |        |     |     |

ZP3

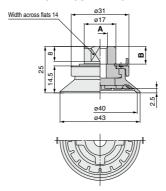
ZP3E

ZP2V

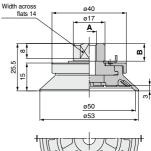
ZP


# **ZP3E** Series

# <u>Dimensions/With Female Thread Adapter: Vacuum Inlet</u>








#### ZP3E-T40UM□-B8 ZP3E-T40UM□-B10



#### ZP3E-T50UM□-B8 ZP3E-T50UM□-B10





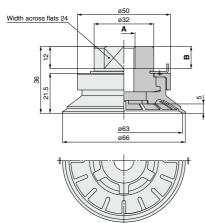
#### **Dimensions**

| Model           | Α         | В   |  |
|-----------------|-----------|-----|--|
| ZP3E-T32UM□-B8  | M8 x 1.25 | 9.5 |  |
| ZP3E-T32UM□-B10 | M10 x 1.5 | 13  |  |

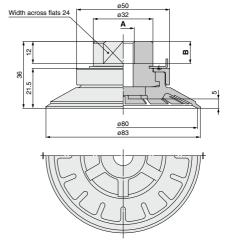
| Model           | Weight [g]/Pad material |      |      |  |  |
|-----------------|-------------------------|------|------|--|--|
| Model           | N/U/CL                  | S    | F    |  |  |
| ZP3E-T32UM□-B8  | 20.6                    | 20.3 | 23.1 |  |  |
| ZP3F-T32HM□-R10 | 19.2                    | 18.9 | 21.7 |  |  |

#### Dimensions

| Model           | Α         | В   |
|-----------------|-----------|-----|
| ZP3E-T40UM□-B8  | M8 x 1.25 | 9.5 |
| ZP3E-T40UM□-B10 | M10 x 1.5 | 13  |


| Model           | Weight [g]/Pad material |      |      |  |  |
|-----------------|-------------------------|------|------|--|--|
| wodei           | N/U/CL                  | S    | F    |  |  |
| ZP3E-T40UM□-B8  | 21.7                    | 21.2 | 24.8 |  |  |
| ZP3E-T40UM□-B10 | 20.3                    | 19.8 | 23.4 |  |  |

Dimensions


| Model           | Α         | В   |  |
|-----------------|-----------|-----|--|
| ZP3E-T50UM□-B8  | M8 x 1.25 | 9.5 |  |
| ZP3E-T50UM□-B10 | M10 x 1.5 | 13  |  |

| Model           | Weight [g]/Pad material |      |      |  |  |
|-----------------|-------------------------|------|------|--|--|
| wodei           | N/U/CL                  | S    | F    |  |  |
| ZP3E-T50UM□-B8  | 32.5                    | 31.7 | 38.0 |  |  |
| ZP3E-T50UM□-B10 | 31.1                    | 30.3 | 36.6 |  |  |

#### ZP3E-T63UM□-B12 ZP3E-T63UM□-B18



#### ZP3E-T80UM□-B12 ZP3E-T80UM□-B18

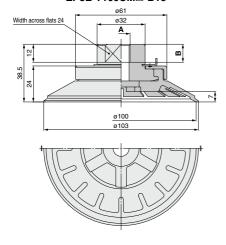


#### **Dimensions**

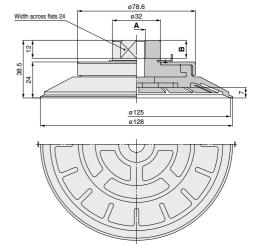
| Model           |            | В   | Weight [g]/Pad material |      |      |  |
|-----------------|------------|-----|-------------------------|------|------|--|
|                 | _ ^        | _ D | N/U/CL                  | S    | F    |  |
| ZP3E-T63UM□-B12 | M12 x 1.75 | 12  | 86.0                    | 84.5 | 96.6 |  |
| ZP3E-T63UM□-B18 | M18 x 1.5  | 18  | 75.9                    | 74.4 | 86.5 |  |

#### **Dimensions**

| Model A         | В          | Weight [g]/Pad material |        |      |      |
|-----------------|------------|-------------------------|--------|------|------|
| iviodei         | _ ^        | В                       | N/U/CL | S    | F    |
| ZP3E-T80UM□-B12 | M12 x 1.75 | 12                      | 94.2   | 92.1 | 110  |
| ZP3E-T80UM□-B18 | M18 x 1.5  | 18                      | 84.1   | 82.0 | 99.6 |


# With Adapter: Vacuum Inlet **ZP3E** Series












### ZP3E-T125UM□-B12 ZP3E-T125UM□-B18



### **Dimensions**

| Model            |            | В  | Weight | [g]/Pad i | material |
|------------------|------------|----|--------|-----------|----------|
| Model            | A          | В  | N/U/CL | S         | F        |
| ZP3E-T100UM□-B12 | M12 x 1.75 | 12 | 132    | 128       | 158      |
| ZP3E-T100UM□-B18 | M18 x 1.5  | 18 | 122    | 118       | 148      |

### **Dimensions**

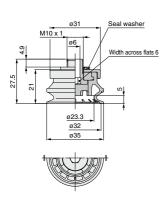
| Model            |            | ь  | Weight | [g]/Pad r | naterial |
|------------------|------------|----|--------|-----------|----------|
| Model            | _ ^        | Р. | N/U/CL | S         | F        |
| ZP3E-T125UM□-B12 | M12 x 1.75 | 12 | 210    | 203       | 256      |
| ZP3E-T125UM□-B18 | M18 x 1.5  | 18 | 200    | 193       | 246      |
| ZP3E-T125UM□-B18 | M18 x 1.5  | 18 | 200    | 193       | 246      |

ZP3

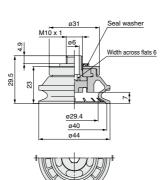
ZP3E

ZP2V

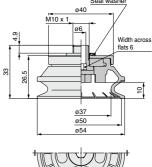
ZP


ŽPR XT661

# Dimensions/With Set Screw: Vacuum Inlet







### ZP3E-T32BM□-A10



### ZP3E-T40BM□-A10

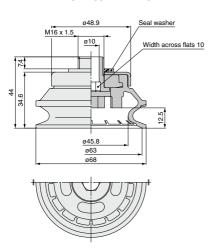


### ZP3E-T50BM□-A10



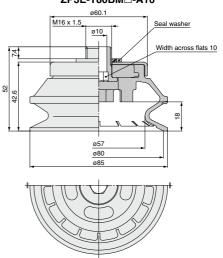


| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-T32BM□-A10       | 24.1   | 23.6 | 27.7 |


| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-T40BM□-A10       | 28.1   | 27.2 | 34.1 |

 Weights
 [g]

 Pad material Moulcut
 Nullcut
 S
 F


 ZP3E-T50BM□-A10
 42.2
 40.7
 52.7

### ZP3E-T63BM□-A16

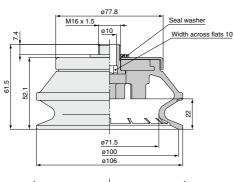


| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-T63BM□-A16       | 116    | 113 | 137 |

### ZP3E-T80BM□-A16



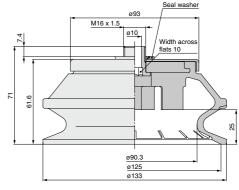
| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-T80BM□-A16       | 170    | 165 | 205 |
|                       |        |     |     |

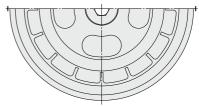

# With Set Screw: Vacuum Inlet ZP3E Series








### ZP3E-T100BM□-A16



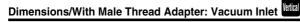


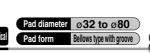

| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-T100BM□-A16      | 293    | 282 | 365 |

### ZP3E-T125BM□-A16



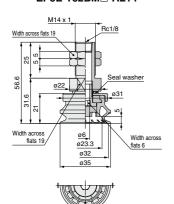



| Weights               |        |     | [g  |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-T125BM□-A16      | 466    | 447 | 603 |

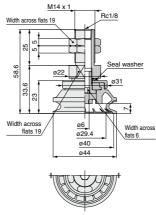

ZP3

ZP3E

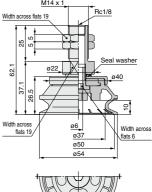
ZP2V


ZP





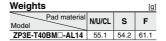




### ZP3E-T32BM□-AL14

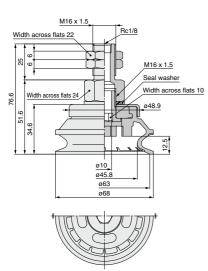


ZP3E-T40BM□-AL14




ZP3E-T50BM□-AL14



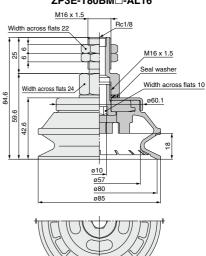


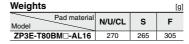

67.7 79.7

Weights [g] Pad material N/U/CL s F Model ZP3E-T32BM□-AL14 51.1 50.6 54.7

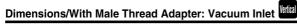


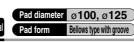
### ZP3E-T63BM□-AL16



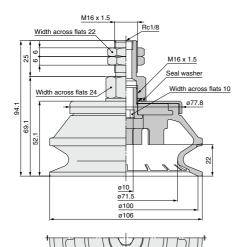


| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-T63BM□-AL16      | 216    | 213 | 236 |

### ZP3E-T80BM□-AL16


ZP3E-T50BM□-AL14 69.2


Model






# With Adapter: Vacuum Inlet **ZP3E** Series





### ZP3E-T100BM□-AL16

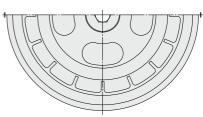




ZP3E-T100BM□-AL16

N/U/CL

393


s F

382

465

### Rc1/8 Width across flats 22 22 M16 x 1.5 Seal washer Width across flats 10 Width across flats 24 03.6 78.6

ZP3E-T125BM□-AL16 M16 x 1.5



ø10\_

ø90.3

ø125

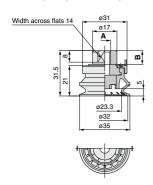
ø133

| Weights               |        |     | [g  |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-T125BM□-AL16     | 565    | 546 | 702 |
|                       |        |     |     |

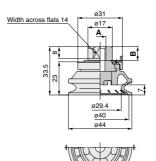
ZP3

ZP3E

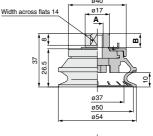

ZP2 ZP2V


ZΡ

# Dimensions/With Female Thread Adapter: Vacuum Inlet








ZP3E-T40BM□-B8 ZP3E-T40BM□-B10



### ZP3E-T50BM□-B8 ZP3E-T50BM□-B10





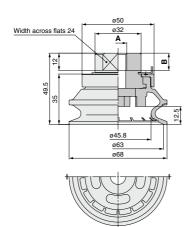
Dimensions

| Model           | Α         | В   |
|-----------------|-----------|-----|
| ZP3E-T32BM□-B8  | M8 x 1.25 | 9.5 |
| ZP3E-T32BM□-B10 | M10 x 1.5 | 13  |

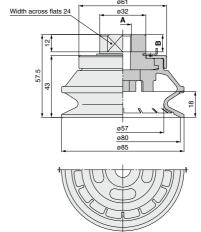
| Model           | Weight [g]/Pad materia |      |      |  |
|-----------------|------------------------|------|------|--|
| wodei           | N/U/CL                 | S    | F    |  |
| ZP3E-T32BM□-B8  | 22.6                   | 22.1 | 26.3 |  |
| ZP3E-T32BM□-B10 | 21.2                   | 20.7 | 24.9 |  |

### **Dimensions**

| Model           | Α         | В   |
|-----------------|-----------|-----|
| ZP3E-T40BM□-B8  | M8 x 1.25 | 9.5 |
| ZP3E-T40BM□-B10 | M10 x 1.5 | 13  |


| Model           | Weight [g]/Pad material |      |      |  |  |
|-----------------|-------------------------|------|------|--|--|
| Model           | N/U/CL                  | S    | F    |  |  |
| ZP3E-T40BM□-B8  |                         | 25.7 |      |  |  |
| ZP3E-T40BM□-B10 | 25.2                    | 24.3 | 31.2 |  |  |

**Dimensions** 


| Model           | Α         | В   |
|-----------------|-----------|-----|
| ZP3E-T50BM□-B8  | M8 x 1.25 | 9.5 |
| ZP3E-T50BM□-B10 | M10 x 1.5 | 13  |

| Model           | Weight [g]/Pad material |      |      |  |  |
|-----------------|-------------------------|------|------|--|--|
| Wodel           | N/U/CL                  | S    | F    |  |  |
| ZP3E-T50BM□-B8  | 41.0                    | 39.5 | 51.5 |  |  |
| ZP3E-T50BM□-B10 | 39.6                    | 38.1 | 50.1 |  |  |

### ZP3E-T63BM□-B12 ZP3E-T63BM□-B18



### ZP3E-T80BM□-B12 ZP3E-T80BM□-B18



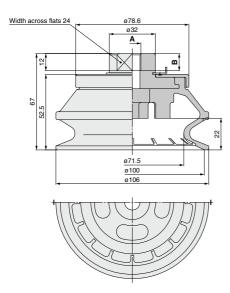
### **Dimensions**

| Model           | Λ.         | В  | Weight | [g]/Pad ı | material |
|-----------------|------------|----|--------|-----------|----------|
| Model           | _ A        | -  | N/U/CL | S         | F        |
| ZP3E-T63BM□-B12 | M12 x 1.75 | 12 | 103    | 100       | 123      |
| ZP3F-T63BM□-B18 | M18 x 1.5  | 18 | 92.5   | 89.6      | 113      |

### **Dimensions**

| Model           |            | А В |        | [g]/Pad ı | material |
|-----------------|------------|-----|--------|-----------|----------|
| iviodei         |            |     | N/U/CL | S         | F        |
| ZP3E-T80BM□-B12 | M12 x 1.75 | 12  | 148    | 143       | 183      |
| ZP3E-T80BM□-B18 | M18 x 1.5  | 18  | 138    | 133       | 173      |

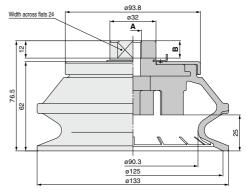
# With Adapter: Vacuum Inlet **ZP3E** Series

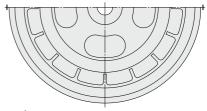







Dimensions/With Female Thread Adapter: Vacuum Inlet


ZP3E-T100BM□-B12 ZP3E-T100BM□-B18




**Dimensions** 

| Model            | Α          | В  | Weight [g | naterial |     |
|------------------|------------|----|-----------|----------|-----|
| Wodei            | ^          | P  | N/U/CL    | S        | F   |
| ZP3E-T100BM□-B12 | M12 x 1.75 | 12 | 255       | 244      | 327 |
| ZP3E-T100BM□-B18 | M18 x 1.5  | 18 | 245       | 234      | 317 |

ZP3E-T125BM□-B12 **ZP3E-T125BM**□-B18





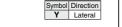
### **Dimensions**

| Model            |            | В  | Weight [g | ]/Pad m | naterial |
|------------------|------------|----|-----------|---------|----------|
| Wodei            | A          |    | N/U/CL    | S       | F        |
| ZP3E-T125BM□-B12 | M12 x 1.75 | 12 | 412       | 393     | 549      |
| ZP3E-T125BM□-B18 | M18 x 1.5  | 18 | 402       | 383     | 539      |
|                  |            |    |           |         |          |

ZP3

ZP3E

ZP2 ZP2V


ZΡ



Lateral vacuum inlet With adapter

**ZP3E-Y32UMN-AL14** 

Vacuum inlet direction



### Pad diameter Symbol Pad diameter 32 ø32 40 ø40 50 ø50 63 ø63 80 ø80 100 ø100

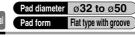
125

Pad form Symbol UM Flat type with groove BM Bellows type with groove

ø125

### Mounting thread size

|        | Symbol | Mounting    | ø <b>32</b> | ø <b>63</b> |
|--------|--------|-------------|-------------|-------------|
|        | Symbol | Thread size | to ø50      | to ø125     |
| Male   | AL14   | M14 x 1     | •           | _           |
| thread | AL16   | M16 x 1.5   | _           | •           |
| Female | B8     | M8 x 1.25   | •           | _           |
| thread | B12    | M12 x 1.75  | _           | •           |


\* Male thread AL14/AL16 connection types have a vacuum exhaust (female thread) port separate from the mounting screw.

### Pad material

| Symbol | Material        |  |  |
|--------|-----------------|--|--|
| N      | NBR             |  |  |
| S      | Silicone rubber |  |  |
| U      | Urethane rubber |  |  |
| F      | FKM             |  |  |
| CL     | Mark-free NBR   |  |  |

\* Refer to page 473 for replacement parts.

# Dimensions/With Male Thread Adapter: Vacuum Inlet





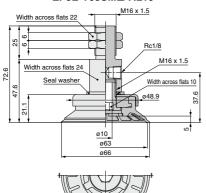
### ZP3E-Y32UM□-AL14 ZP3E-Y40UM□-AL14 ZP3E-Y50UM□-AL14 Width across M14 x 1 Width across M14 x 1 Width across M14 x 1 flats 19 flats 19 A-A M5 x 0.8/ M5 x 0.8/ M5 x 0.8 Effective thread depth 5 Effective thread denth 5 M10 x 1 M10 x 1 57.1 32 ø31 ø31 ø6 Width across flats 6 Width across ø40 ø50 Width across flats 6 Width across flats 6 flats 19

| weights               |        |      | Įg   |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-Y32UM□-AL14      | 58.4   | 58.1 | 60.9 |

| Weights               |        |      | [9   |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-Y40UM□-AL14      | 59.5   | 59.0 | 62.5 |

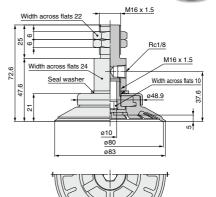
| Weights               |        |      | [g   |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-Y50UM□-AL14      | 70.1   | 69.3 | 75.5 |
|                       |        |      |      |

14/-:---


# Dimensions/With Male Thread Adapter: Vacuum Inlet

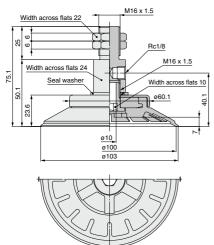






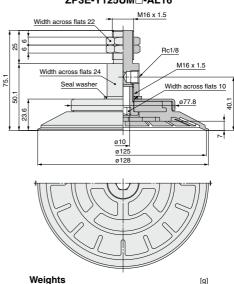

### ZP3E-Y63UM□-AL16




| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| 7P3F-Y63UM□-AL16      | 216    | 215 | 227 |

### ZP3E-Y80UM□-AL16




| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-Y80UM□-AL16      | 224    | 222 | 240 |

### ZP3E-Y100UM□-AL16



| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-Y100UM□-AL16     | 271    | 267 | 297 |

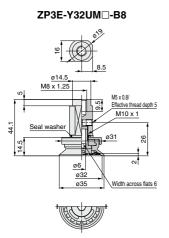
### ZP3E-Y125UM□-AL16

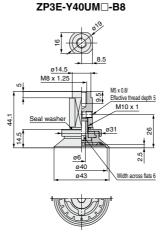


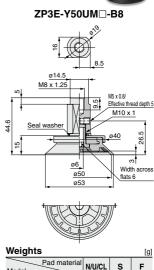
| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-Y125UM□-AL16     | 364    | 357 | 411 |

ZP3

ZP3E


ZP2V


ZΡ


# Dimensions/With Female Thread Adapter: Vacuum Inlet





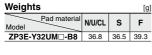


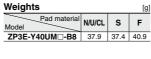


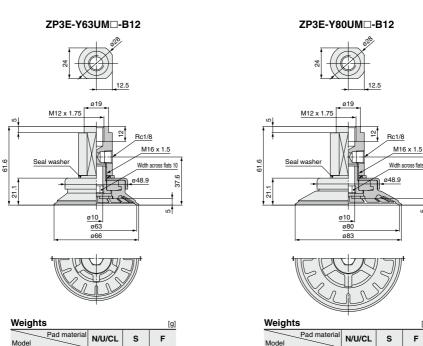


48.5 47.7 53.9

37


[g]


F


166

148

ZP3E-Y50UM□-B8







ZP3E-Y80UM□-B12

150

142

ZP3E-Y63UM□-B12

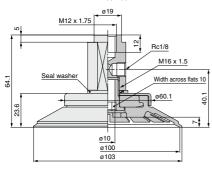
140

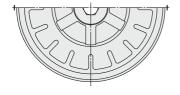
153

# With Adapter: Vacuum Inlet 273E Series





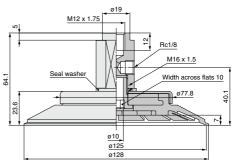


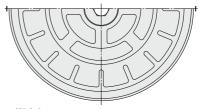




# Dimensions/With Female Thread Adapter: Vacuum Inlet

ZP3E-Y100UM□-B12






| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3F-Y100UM□-B12      | 271    | 267 | 297 |

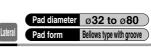
ZP3E-Y125UM□-B12



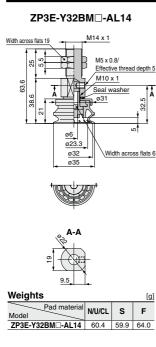


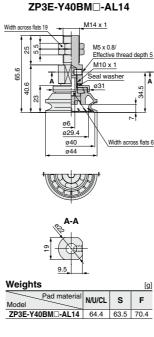


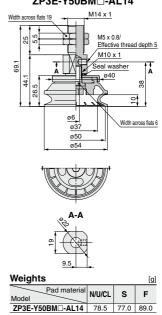
| Weights               |        |     | [g  |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-Y125UM□-B12      | 364    | 357 | 411 |

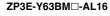

ZP3

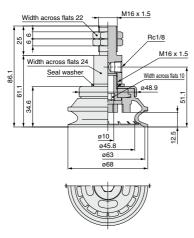
ZP3E

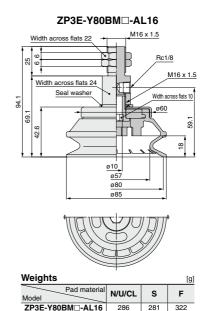

ZP2 ZP2V


ZP


# <u>Dimensions/With Male Thread Adapter: Vacuum Inlet</u>





# ZP3E-Y50BM□-AL14













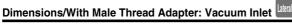

[g]

F

230 253

s

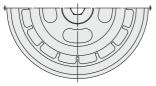
Weights


Pad material

ZP3E-Y63BM□-AL16

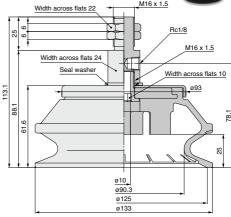
N/U/CL

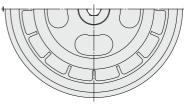
233


# With Adapter: Vacuum Inlet 273E Series



### Pad diameter ø100, ø125 Pad form Bellows type with groove


### ZP3E-Y100BM□-AL16






| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-Y100BM□-AL16     | 410    | 399 | 482 |

ZP3E-Y125BM□-AL16





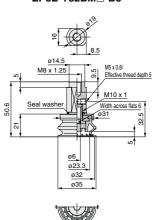
| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-Y125BM□-AL16     | 582    | 563 | 719 |
|                       |        |     |     |

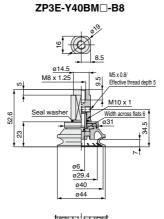
ZP3

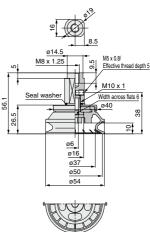
ZP3E

ZP2 ZP2V

ZΡ

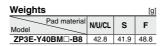

# Dimensions/With Female Thread Adapter: Vacuum Inlet





ZP3E-Y50BM□-B8

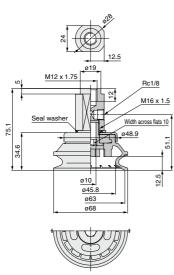


### ZP3E-Y32BM□-B8



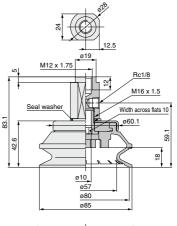






| Weights      |         |   | [g] |
|--------------|---------|---|-----|
| Pad material | N/LI/CI | S | F   |

ZP3E-Y32BM□-B8




### ZP3E-Y63BM□-B12

38.8 38.3 42.4



| Veights             |        |     | [g] |  |
|---------------------|--------|-----|-----|--|
| Pad material flodel | N/U/CL | s   | F   |  |
| ZP3E-Y63BM□-B12     | 159    | 156 | 179 |  |
|                     |        |     |     |  |

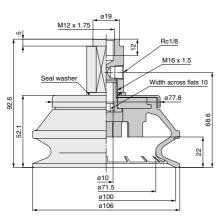
### ZP3E-Y80BM□-B12

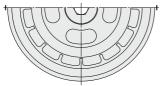




| Weights               |        |     | [g  |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | S   | F   |
| ZP3E-Y80BM□-B12       | 212    | 207 | 247 |

# With Adapter: Vacuum Inlet 273E Series

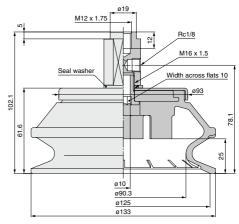


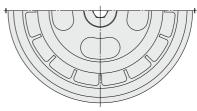






## ZP3E-Y100BM□-B12

12.5




| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-Y100BM□-B12      | 335    | 324 | 407 |

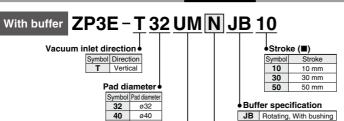
### ZP3E-Y125BM□-B12







| Weights            |        |     | [g: |
|--------------------|--------|-----|-----|
| Pad material Model | N/U/CL | s   | F   |
| ZP3E-Y125BM□-B12   | 508    | 489 | 645 |


ZP3

ZP3E

ZP2 ZP2V

ZΡ

### **How to Order**

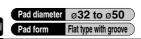


Symbol Pad diameter
32 ø32
40 ø40
50 ø50
63 ø63
80 ø80
100 ø100
125 ø125

● Pad material

| ◆Pad form |                          |  |  |  |
|-----------|--------------------------|--|--|--|
| Symbol    | Form                     |  |  |  |
| UM        | Flat type with groove    |  |  |  |
| BM        | Bellows type with groove |  |  |  |

| ymbol | Material        |
|-------|-----------------|
| N     | NBR             |
| S     | Silicone rubber |
| U     | Urethane rubber |
| F     | FKM             |
| CL    | Mark-free NBR   |

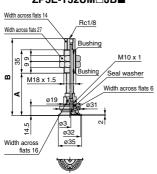

### **Specifications**

| Buffer specification Pad diameter |              | Mounting    | Tightening torque | Stroke | Spring reactive force [N] |                |
|-----------------------------------|--------------|-------------|-------------------|--------|---------------------------|----------------|
| bullet specification              | rau ulametei | iviouriting | [N·m]             | [mm]   | At 0 stroke               | At full stroke |
| ø32 to ø50 M18 x 1.5              |              | 10 5 6      |                   | 6.5    |                           |                |
|                                   | M18 x 1.5    | 28 to 32    | 30                | 5      | 8.5                       |                |
|                                   |              |             | 50                | 5      | 10.5                      |                |
| Rotating                          |              |             |                   | 10     | 10                        | 11.5           |
| ø63 to ø125                       | ø63 to ø125  | M22 x 1.5   | 2 x 1.5 48 to 52  | 30     | 10                        | 13.5           |
|                                   |              |             |                   | 50     | 10                        | 15.5           |

ZP3E-T40UM□JB■

Rc1/8

# Dimensions/With Buffer: Vacuum Inlet




M10 x 1

Seal washer

Width across flats 6

### ZP3E-T32UM□JB■



# \_\_\_flats 16/

14.5

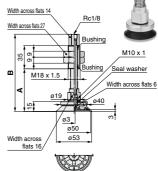
Width across

Width across flats 14

Width across flats 27

83

⋖


M18 x 1.5

a19

| Dimensions      |              |             |  |  |  |
|-----------------|--------------|-------------|--|--|--|
| Model           | Α            | В           |  |  |  |
| ZP3E-T40UM□JB10 | 63.6         | 115.6       |  |  |  |
| ZP3E-T40UM□JB30 | 88.6         | 140.6       |  |  |  |
| ZP3E-T40UM□JB50 | 108.6        | 160.6       |  |  |  |
|                 | Majaha [a]/[ | ad material |  |  |  |

| Model           | Weight [g]/Pad material |     |     |  |
|-----------------|-------------------------|-----|-----|--|
| Model           | N/U/CL                  | S   | F   |  |
| ZP3E-T40UM□JB10 | 195                     | 195 | 198 |  |
| ZP3E-T40UM□JB30 | 210                     | 209 | 213 |  |
| ZP3E-T40UM□JB50 | 221                     | 221 | 224 |  |

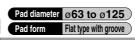
### ZP3E-T50UM□JB■



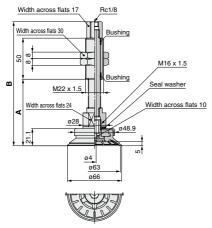
### **Dimensions**

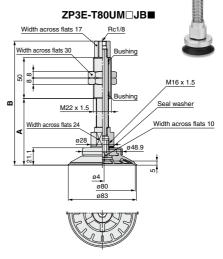
| Model           | Α     | В     |
|-----------------|-------|-------|
| ZP3E-T50UM□JB10 | 64.1  | 116.1 |
| ZP3E-T50UM□JB30 | 89.1  | 141.1 |
| ZP3E-T50UM□JB50 | 109.1 | 161.1 |
|                 |       |       |

| Model           | Weight [g]/Pad material |     |     |  |
|-----------------|-------------------------|-----|-----|--|
| Model           | N/U/CL                  | S   | F   |  |
| ZP3E-T50UM□JB10 | 206                     | 205 | 211 |  |
| ZP3E-T50UM□JB30 | 220                     | 220 | 226 |  |
| ZP3E-T50UM□JB50 | 232                     | 231 | 237 |  |


### **Dimensions**

| Model           | Α     | В     |
|-----------------|-------|-------|
| ZP3E-T32UM□JB10 |       | 115.6 |
| ZP3E-T32UM□JB30 | 88.6  | 140.6 |
| ZP3E-T32UM□JB50 | 108.6 | 160.6 |
|                 |       |       |


|                 | Weight [g]/Pad material |     |     |  |
|-----------------|-------------------------|-----|-----|--|
|                 | N/U/CL                  | S   | F   |  |
| ZP3E-T32UM□JB10 | 194                     | 194 | 197 |  |
| ZP3E-T32UM□JB30 | 209                     | 208 | 211 |  |
| ZP3E-T32UM□JB50 | 220                     | 220 | 223 |  |


<sup>\*</sup> Refer to page 474 for replacement parts.

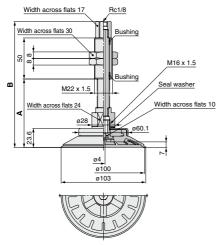




### ZP3E-T63UM□JB■



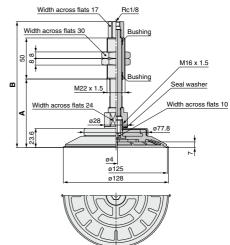



### **Dimensions**

| Model           | _     | В     | Weight [g]/Pad material |     |     |
|-----------------|-------|-------|-------------------------|-----|-----|
| Model           | Α     | -     | N/U/CL                  | S   | F   |
| ZP3E-T63UM□JB10 | 81.1  | 151.1 | 408                     | 406 | 418 |
| ZP3E-T63UM□JB30 | 106.1 | 176.1 | 437                     | 435 | 447 |
| ZP3E-T63UM□JB50 | 126.1 | 196.1 | 460                     | 458 | 470 |

### **Dimensions**

| Model           | Α     | В     | Weight [g]/Pad material |     |     |
|-----------------|-------|-------|-------------------------|-----|-----|
| Wodel           | _ ^   | -     | N/U/CL                  | S   | F   |
| ZP3E-T80UM□JB10 | 81.1  | 151.1 | 416                     | 414 | 431 |
| ZP3E-T80UM□JB30 | 106.1 | 176.1 | 445                     | 443 | 461 |
| ZP3E-T80UM□JB50 | 126.1 | 196.1 | 468                     | 466 | 483 |


### ZP3E-T100UM□JB■



### Dimensions

| Difficusions     |       |       |                         |     |     |  |  |
|------------------|-------|-------|-------------------------|-----|-----|--|--|
| Model            | Α     | В     | Weight [g]/Pad material |     |     |  |  |
| Model            |       |       | N/U/CL                  | S   | F   |  |  |
| ZP3E-T100UM□JB10 | 83.6  | 153.6 | 462                     | 459 | 488 |  |  |
| ZP3E-T100UM□JB30 | 108.6 | 178.6 | 492                     | 488 | 518 |  |  |
| ZP3E-T100UM□JB50 | 128.6 | 198.6 | 514                     | 511 | 540 |  |  |

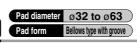
### ZP3E-T125UM□JB■



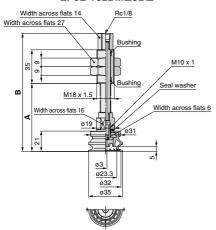
**Dimensions** 

| Model            | A B   |       | Weight [g]/Pad material |     |     |
|------------------|-------|-------|-------------------------|-----|-----|
| Model            | _ A   |       | N/U/CL                  | S   | F   |
| ZP3E-T125UM□JB10 | 83.6  | 153.6 | 555                     | 549 | 602 |
| ZP3E-T125UM□JB30 | 108.6 | 178.6 | 585                     | 578 | 631 |
| ZP3E-T125UM□JB50 | 128.6 | 198.6 | 608                     | 601 | 654 |

ZP3


ZP3E

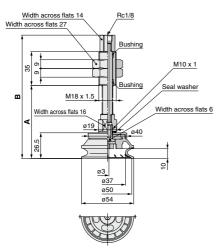
ZP2


ZP2V

ZΡ

# Dimensions/With Buffer: Vacuum Inlet




### ZP3E-T32BM□JB■



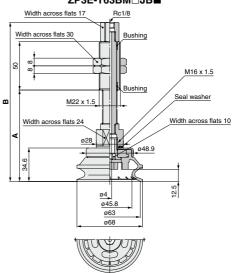
### **Dimensions**

| Model           | Α     | А В   |        | Weight [g]/Pad material |     |  |
|-----------------|-------|-------|--------|-------------------------|-----|--|
| Model           | _ A   | -     | N/U/CL | S                       | F   |  |
| ZP3E-T32BM□JB10 | 70.1  | 122.1 | 204    | 204                     | 207 |  |
| ZP3E-T32BM□JB30 | 95.1  | 147.1 | 219    | 218                     | 221 |  |
| ZP3E-T32BM□JB50 | 115.1 | 167.1 | 230    | 230                     | 233 |  |

### ZP3E-T50BM□JB■



### **Dimensions**


| Model           | А     | В          | Weight [g]/Pad material |     |     |
|-----------------|-------|------------|-------------------------|-----|-----|
| Model           |       | │ <b>P</b> | N/U/CL                  | S   | F   |
| ZP3E-T50BM□JB10 | 75.6  | 127.6      | 223                     | 222 | 229 |
| ZP3E-T50BM□JB30 | 100.6 | 152.6      | 238                     | 237 | 243 |
| ZP3E-T50BM□JB50 | 120.6 | 172.6      | 249                     | 249 | 255 |

### ZP3E-T40BM□JB■ Width across flats 14 Rc1/8 Width across flats 27 Bushing M10 x 1 33 Bushing Seal washer œ M18 x 1.5 6 019 Width across flats 6 Width across flats 16 23 ø29.4 ø40

### **Dimensions**

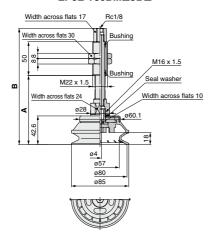
| Model           | Α     | В     | Weight [g]/Pad material |     |     |
|-----------------|-------|-------|-------------------------|-----|-----|
| Model           | _ A   |       | N/U/CL                  | S   | F   |
| ZP3E-T40BM□JB10 | 72.1  | 124.1 | 205                     | 205 | 208 |
| ZP3E-T40BM□JB30 | 97.1  | 149.1 | 220                     | 219 | 223 |
| ZP3E-T40BM□JB50 | 117.1 | 169.1 | 231                     | 231 | 234 |

### ZP3E-T63BM□JB■



### **Dimensions**

| Model           | AB    |          | A   B  |     | Weight [g]/Pad material |  |  |
|-----------------|-------|----------|--------|-----|-------------------------|--|--|
| wodei           | Α .   | <b>₽</b> | N/U/CL | S   | F                       |  |  |
| ZP3E-T63BM□JB10 | 94.6  | 164.6    | 434    | 433 | 445                     |  |  |
| ZP3E-T63BM□JB30 | 119.6 | 189.6    | 464    | 462 | 474                     |  |  |
| ZP3E-T63BM□JB50 | 139.6 | 209.6    | 487    | 485 | 497                     |  |  |






20

ш

### ZP3E-T80BM□JB■



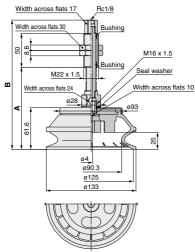
### **Dimensions**

|       | В     | Weight [g]/Pad material    |                                    |                                                      |
|-------|-------|----------------------------|------------------------------------|------------------------------------------------------|
| _ ^   | Ь     | N/U/CL                     | S                                  | F                                                    |
| 102.6 | 172.6 | 443                        | 441                                | 458                                                  |
| 127.6 | 197.6 | 472                        | 470                                | 487                                                  |
| 147.6 | 217.6 | 495                        | 493                                | 510                                                  |
|       | 127.6 | 102.6 172.6<br>127.6 197.6 | 102.6 172.6 443<br>127.6 197.6 472 | A B N/U/CL S 102.6 172.6 443 441 127.6 197.6 472 470 |

### ZP3E-T100BM□JB■ Width across flats 17 Rc1/8 Bushing Width across flats 30 M16 x 1.5 Bushing Seal washer M22 x 1.5 Width across flats 24 Width across flats 10 ø28 X ø77.8 52.1 ผ



ø100 ø106


ø4 ø71.5

### **Dimensions**

**SMC** 

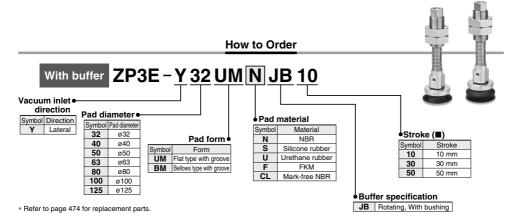
| Model            | _     | АВ    |        | Weight [g]/Pad |     | [g]/Pad r | naterial |
|------------------|-------|-------|--------|----------------|-----|-----------|----------|
| Wodel            | _ A   | -     | N/U/CL | S              | F   |           |          |
| ZP3E-T100BM□JB10 | 112.1 | 182.1 | 481    | 477            | 507 |           |          |
| ZP3E-T100BM□JB30 | 137.1 | 207.1 | 510    | 506            | 536 |           |          |
| ZP3E-T100BM□JB50 | 157.1 | 227.1 | 533    | 529            | 559 |           |          |

### ZP3E-T125BM□JB■



### **Dimensions**

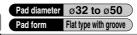
| Model              | _     | В     | Weight [g]/Pad material |     |     |  |
|--------------------|-------|-------|-------------------------|-----|-----|--|
| Model              | Α .   | В     | N/U/CL                  | S   | F   |  |
| ZP3E-T125BM□JB10   | 121.6 | 191.6 | 558                     | 552 | 605 |  |
| ZP3E-T125BM□JB30   | 146.6 | 216.6 | 588                     | 581 | 634 |  |
| 7D3E-T125BM   IB50 | 166.6 | 236.6 | 610                     | 604 | 657 |  |

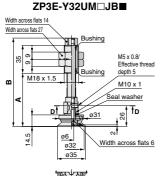

ZP3

ZP3E

ZP2

ZP2V


ZΡ



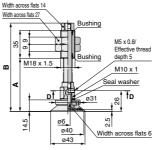

### **Specifications**

| Duffer enseitiestien | ification Pad diameter Mounting Tig |           | Tightening torque | Stroke | Spring reactive force [N] |                |  |
|----------------------|-------------------------------------|-----------|-------------------|--------|---------------------------|----------------|--|
| Buffer specification | Pad diameter                        | Mounting  | [N·m]             | [mm]   | At 0 stroke               | At full stroke |  |
|                      |                                     | 10        | 5                 | 6.5    |                           |                |  |
|                      | Ø32 to Ø50 M18 x 1.5  Rotating      | M18 x 1.5 | 28 to 32          | 30     | 5                         | 8.5            |  |
| Pototina             |                                     |           |                   | 50     | 5                         | 10.5           |  |
| notating             |                                     |           |                   | 10     | 10                        | 11.5           |  |
| ø63 to ø12           | ø63 to ø125                         | M22 x 1.5 | 48 to 52          | 30     | 10                        | 13.5           |  |
|                      |                                     |           |                   | 50     | 10                        | 15.5           |  |









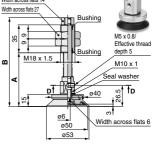

### **Dimensions**

| Model           | Α     | В     |
|-----------------|-------|-------|
| ZP3E-Y32UM□JB10 | 66.6  | 110.6 |
| ZP3E-Y32UM□JB30 | 91.6  | 135.6 |
| ZP3E-Y32UM□JB50 | 111.6 | 155.6 |
| -               |       |       |

| Model           | Weight [g]/Pad material |     |     |  |  |
|-----------------|-------------------------|-----|-----|--|--|
| wodei           | N/U/CL                  | S   | F   |  |  |
| ZP3E-Y32UM□JB10 | 196                     | 196 | 200 |  |  |
| ZP3E-Y32UM□JB30 | 211                     | 210 | 214 |  |  |
| ZP3E-Y32UM□JB50 | 222                     | 222 | 226 |  |  |

# ZP3E-Y40UM□JB■





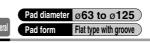

### Dimensions

| Model           | A     | В     |
|-----------------|-------|-------|
| ZP3E-Y40UM□JB10 | 66.6  | 110.6 |
| ZP3E-Y40UM□JB30 | 91.6  | 135.6 |
| ZP3E-Y40UM□JB50 | 111.6 | 155.6 |
|                 |       |       |
|                 |       |       |

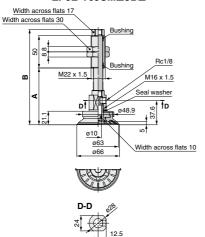
| Model           | Weight [g]/Pad material |     |     |  |  |
|-----------------|-------------------------|-----|-----|--|--|
| Wodel           | N/U/CL                  | S   | F   |  |  |
| ZP3E-Y40UM□JB10 | 200                     | 199 | 206 |  |  |
| ZP3E-Y40UM□JB30 | 215                     | 214 | 221 |  |  |
| ZP3E-Y40UM□JB50 | 226                     | 225 | 232 |  |  |

# ZP3E-Y50UM□JB■ Width across flats 14





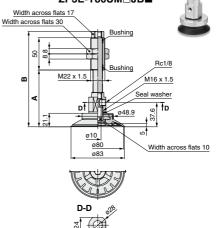

### **Dimensions**


| Model           | Α     | В     |
|-----------------|-------|-------|
| ZP3E-Y50UM□JB10 | 67.1  | 111.1 |
| ZP3E-Y50UM□JB30 | 92.1  | 136.1 |
| ZP3E-Y50UM□JB50 | 112.1 | 156.1 |
|                 |       |       |

| Model           | Weight [g]/Pad material |     |     |  |  |
|-----------------|-------------------------|-----|-----|--|--|
| Wodel           | N/U/CL                  | S   | F   |  |  |
| ZP3E-Y50UM□JB10 | 214                     | 213 | 225 |  |  |
| ZP3E-Y50UM□JB30 | 229                     | 227 | 239 |  |  |
| ZP3E-Y50UM□JB50 | 240                     | 239 | 251 |  |  |

# Dimensions/With Buffer: Vacuum Inlet

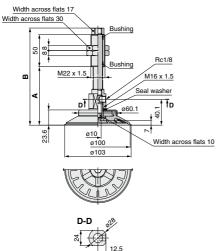



### ZP3E-Y63UM□JB■



### **Dimensions**

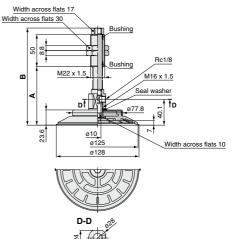
| Model           | А В   |       | Weight | [g]/Pad ı | material |
|-----------------|-------|-------|--------|-----------|----------|
| Model           | Model | -     | N/U/CL | S         | F        |
| ZP3E-Y63UM□JB10 | 88.1  | 148.1 | 424    | 421       | 445      |
| ZP3E-Y63UM□JB30 | 113.1 | 173.1 | 453    | 451       | 474      |
| ZP3E-Y63UM□JB50 | 133.1 | 193.1 | 476    | 473       | 497      |


### ZP3E-Y80UM□JB■



### **Dimensions**

| Model           | АВ    |       | Α      | Weight | [g]/Pad r | material |
|-----------------|-------|-------|--------|--------|-----------|----------|
| Wodel           |       | -     | N/U/CL | S      | F         |          |
| ZP3E-Y80UM□JB10 | 88.1  | 148.1 | 478    | 473    | 513       |          |
| ZP3E-Y80UM□JB30 | 113.1 | 173.1 | 507    | 502    | 542       |          |
| ZP3E-Y80UM□JB50 | 133.1 | 193.1 | 530    | 525    | 565       |          |


### ZP3E-Y100UM□JB■



### **Dimensions**

| Model            | А В   | В     | Weight [g]/Pad materia |     |     |
|------------------|-------|-------|------------------------|-----|-----|
| wodei            |       | -     | N/U/CL                 | S   | F   |
| ZP3E-Y100UM□JB10 | 90.6  | 150.6 | 601                    | 590 | 673 |
| ZP3E-Y100UM□JB30 | 115.6 | 175.6 | 630                    | 619 | 702 |
| ZP3F-Y100UM□JB50 | 135.6 | 195.6 | 653                    | 642 | 725 |

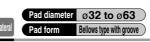
### ZP3E-Y125UM□JB■



### Dimensions

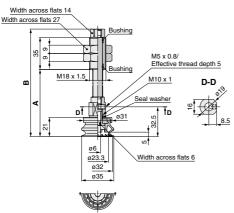
| Model            | АВ    |       | Weight | [g]/Pad r | material |
|------------------|-------|-------|--------|-----------|----------|
| Wodel            | _ A   | -     | N/U/CL | S         | F        |
| ZP3E-Y125UM□JB10 | 90.6  | 150.6 | 773    | 754       | 910      |
| ZP3E-Y125UM□JB30 | 115.6 | 175.6 | 803    | 784       | 940      |
| ZP3F-Y125UM□JB50 | 135.6 | 195.6 | 826    | 807       | 963      |

ZP3


ZP3E

ZP2V

ZΡ


ZPT ZPR XT661

# Dimensions/With Buffer: Vacuum Inlet



Width across flats 14 Width across flats 27

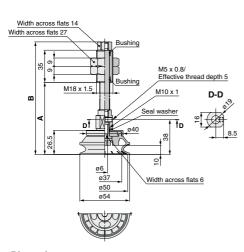
### ZP3E-Y32BM□JB■



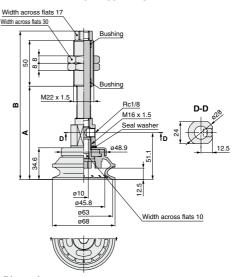
# M5 x 0.8/ Effective thread depth 5 M10 x 1 D-D washer washer th across flats 6

### **Dimensions**

| Model           | А В   |       | Weight | [g]/Pad i | material |
|-----------------|-------|-------|--------|-----------|----------|
| Model           | ^     | -     | N/U/CL | S         | F        |
| ZP3E-Y32BM□JB10 | 73.1  | 117.1 | 194    | 194       | 198      |
| ZP3E-Y32BM□JB30 | 98.1  | 142.1 | 210    | 210       | 214      |
| ZP3E-Y32BM□JB50 | 118.1 | 162.1 | 223    | 223       | 227      |


### **Dimensions**

| Model           | A     |       |        |     |     |  |  |  |  |  |  |  |  |  | В | Weight | [g]/Pad r | material |
|-----------------|-------|-------|--------|-----|-----|--|--|--|--|--|--|--|--|--|---|--------|-----------|----------|
| Model           |       |       | N/U/CL | S   | F   |  |  |  |  |  |  |  |  |  |   |        |           |          |
| ZP3E-Y40BM□JB10 | 75.1  | 119.1 | 198    | 197 | 206 |  |  |  |  |  |  |  |  |  |   |        |           |          |
| ZP3E-Y40BM□JB30 | 100.1 | 144.1 | 214    | 213 | 220 |  |  |  |  |  |  |  |  |  |   |        |           |          |
| ZP3E-Y40BM□JB50 | 120.1 | 164.1 | 227    | 226 | 233 |  |  |  |  |  |  |  |  |  |   |        |           |          |


ZP3E-Y40BM□JB■

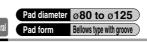
Bushing

### ZP3E-Y50BM□JB■

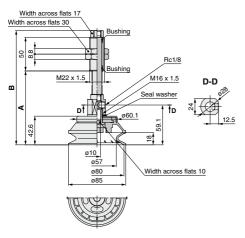


### ZP3E-Y63BM□JB■




### **Dimensions**

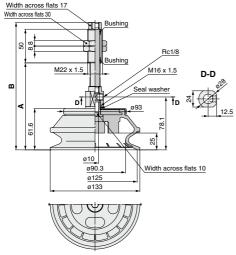
| Model           | А В   |       | Weight | [g]/Pad i | material |
|-----------------|-------|-------|--------|-----------|----------|
| Wodei           | A     | P     | N/U/CL | S         | F        |
| ZP3E-Y50BM□JB10 | 78.6  | 122.6 | 212    | 211       | 223      |
| ZP3E-Y50BM□JB30 | 103.6 | 147.6 | 228    | 227       | 239      |
| ZP3E-Y50BM□JB50 | 123 6 | 167.6 | 241    | 240       | 252      |


### **Dimensions**

| Model           |       | В     | Weight [g]/Pad material |     |     |
|-----------------|-------|-------|-------------------------|-----|-----|
| Model           | A   B |       | N/U/CL                  | S   | F   |
| ZP3E-Y63BM□JB10 | 101.6 | 161.6 | 422                     | 419 | 442 |
| ZP3E-Y63BM□JB30 | 126.6 | 186.6 | 453                     | 450 | 474 |
| ZP3E-Y63BM□JB50 | 146.6 | 206.6 | 478                     | 475 | 499 |

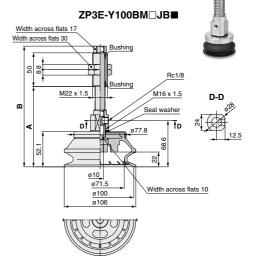
# Dimensions/With Buffer: Vacuum Inlet




### ZP3E-Y80BM□JB■



### **Dimensions**


| Model           |       | В      | Weight [g]/Pad materia |     |     |
|-----------------|-------|--------|------------------------|-----|-----|
| Model           |       | N/U/CL | S                      | F   |     |
| ZP3E-Y80BM□JB10 | 109.6 | 169.6  | 461                    | 456 | 511 |
| ZP3E-Y80BM□JB30 | 134.6 | 194.6  | 507                    | 502 | 542 |
| ZP3E-Y80BM□JB50 | 154.6 | 214.6  | 532                    | 527 | 567 |

# ZP3E-Y125BM□JB■



### **Dimensions**

| Model            | A   B |       | Weight [g]/Pad material |     |     |
|------------------|-------|-------|-------------------------|-----|-----|
| Wodel            |       |       | N/U/CL                  | S   | F   |
| ZP3E-Y125BM□JB10 | 128.6 | 188.6 | 771                     | 752 | 908 |
| ZP3E-Y125BM□JB30 | 153.6 | 213.6 | 803                     | 784 | 940 |
| ZP3E-Y125BM□JB50 | 173.6 | 233.6 | 827                     | 808 | 964 |



### **Dimensions**

| Model            | Α     | В      | Weight [g]/Pad material |     |     |
|------------------|-------|--------|-------------------------|-----|-----|
| Model            | A B   | N/U/CL | S                       | F   |     |
| ZP3E-Y100BM□JB10 | 119.1 | 179.1  | 599                     | 588 | 671 |
| ZP3E-Y100BM□JB30 | 144.1 | 204.1  | 630                     | 619 | 702 |
| ZP3E-Y100BM□JB50 | 164.1 | 224.1  | 655                     | 644 | 727 |

ZP3

ZP3E

ZP2 ZP2V

ZPT

### **How to Order**

# Vertical vacuum inlet With ball joint adapter ZP3E - T F 32 UM N - AL6

Vacuum inlet direction

| Symbol | Direction |
| T | Vertical

Specification (mechanism)

### Pad diameter

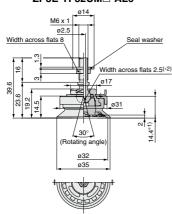
Ball joint

| Symbol | Pad diameter |
|--------|--------------|
| 32     | ø32          |
| 40     | ø40          |
| 50     | ø50          |
| 63     | ø63          |
| 80     | ø80          |
| 100    | ø100         |
| 125    | ø125         |

|        | Pad form                 |
|--------|--------------------------|
| Symbol | Form                     |
| UM     | Flat type with groove    |
| BM     | Rollows type with groove |

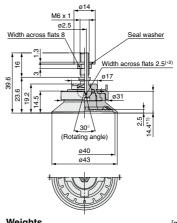
### Mounting thread size

|          |                                                   | Symbol | Mounting<br>Thread size | ø32<br>to ø50 | ø63<br>to ø125 |
|----------|---------------------------------------------------|--------|-------------------------|---------------|----------------|
| ad       | For direct<br>mounting<br>For plate<br>connection | AL6    | M6 x 1                  | •             | _              |
| 밀        | mounting                                          | AL12   | M12 x 1.25              | _             | •              |
| <u>e</u> | For plate                                         | AL14   | M14 x 1                 | •             |                |
| ≥        | connection                                        | AL16   | M16 x 1.5               | _             | •              |
| F        | emale                                             | B8     | M8 x 1.25               | •             | _              |
| 1        | thread                                            | B12    | M12 x 1.75              | _             | •              |


### Pad material

| Symbol | Material        |
|--------|-----------------|
| N      | NBR             |
| S      | Silicone rubber |
| U      | Urethane rubber |
| F      | FKM             |
| CL     | Mark-free NBR   |

# Dimensions/With Ball Joint Adapter: Vacuum Inlet

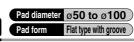



### ZP3E-TF32UM□-AL6



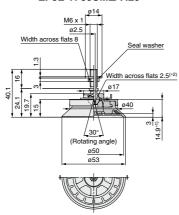
| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-TF32UM□-AL6      | 38.0   | 37.7 | 40.5 |

### ZP3E-TF40UM□-AL6



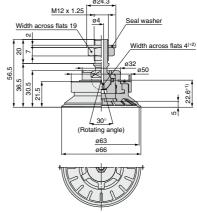

| Weights               |        |      | [9]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-TF40UM□-AL6      | 39.1   | 38.6 | 42.2 |
|                       |        |      |      |

- \*1) Center of the rotating angle
- \*2) Position of the adapter mounting tool


<sup>\*</sup> Refer to pages 475 and 476 for replacement parts.

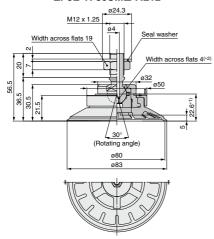






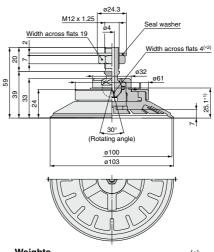

### ZP3E-TF50UM□-AL6




| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-TF50UM□-AL6      | 57.2   | 56.4 | 62.2 |

### ZP3E-TF63UM□-AL12




| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-TF63UM□-AL12     | 146    | 145 | 157 |

### ZP3E-TF80UM□-AL12



| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-TF80UM□-AL12     | 154    | 152 | 170 |

### ZP3E-TF100UM□-AL12



| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-TF100UM□-AL12    | 192    | 189 | 218 |

ZP3

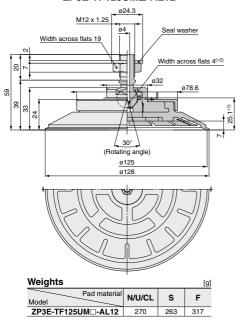
ZP3E

ZP2

ZP2V

ZPT ZPT ZPR XT661

<sup>\*1)</sup> Center of the rotating angle


<sup>\*2)</sup> Position of the adapter mounting tool

# Dimensions/With Ball Joint Adapter: Vacuum Inlet



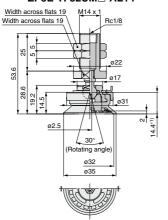


### ZP3E-TF125UM□-AL12



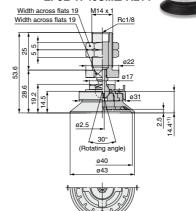
- \*1) Center of the rotating angle
- \*2) Position of the adapter mounting tool

Note) When mounting and removing this product, use a hexagon wrench at the position of the adapter mounting tool shown in the figure (\*2).



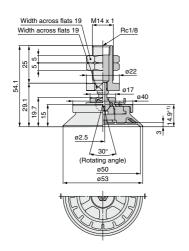




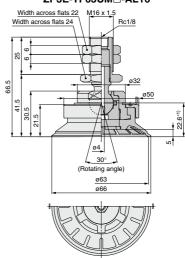

### ZP3E-TF32UM□-AL14




| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-TF32UM□-AL14     | 59.0   | 58.6 | 61.4 |

### ZP3E-TF40UM□-AL14




| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-TF40UM□-AL14     | 60.0   | 59.6 | 63.1 |

### ZP3E-TF50UM□-AL14



| Weights            |        |      | [g]  |
|--------------------|--------|------|------|
| Pad material Model | N/U/CL | s    | F    |
| ZP3E-TF50UM□-AL14  | 78.1   | 77.3 | 83.6 |

### ZP3E-TF63UM□-AL16



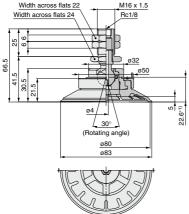
| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-TF63UM□-AL16     | 184    | 183 | 195 |



ZP3E

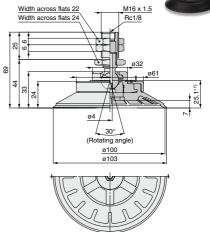
ZP2V

ZPT ZPT ZPR


ZPR XT661

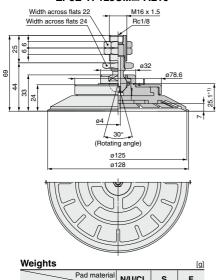
# Dimensions/With Ball Joint Male Thread Adapter: Vacuum Inlet






# ZP3E-TF80UM□-AL16




| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-TF80UM□-AL16     | 192    | 190 | 208 |

### ZP3E-TF100UM□-AL16



| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-TF100UM□-AL16    | 230    | 227 | 256 |

### ZP3E-TF125UM□-AL16



N/U/CL

308

s

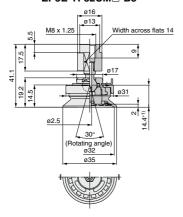
301

F

355

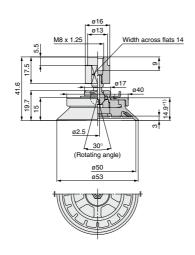
ZP3E-TF125UM□-AL16

Model


<sup>\*1)</sup> Center of the rotating angle

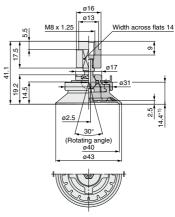






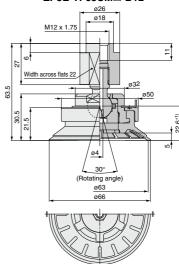






| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-TF32UM□-B8       | 40.9   | 40.5 | 43.4 |

### ZP3E-TF50UM□-B8




| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-TF50UM□-B8       | 60.0   | 59.2 | 65.5 |

### ZP3E-TF40UM□-B8



| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-TF40UM□-B8       | 41.9   | 41.5 | 45.0 |

### ZP3E-TF63UM□-B12



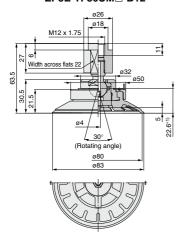
| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-TF63UM□-B12      | 151    | 150 | 162 |

ZP3


ZP3E

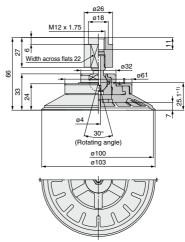
ZP2

ZP2V


ZΡ

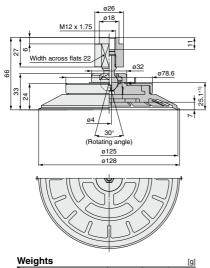
ZPT ZPR XT661






### ZP3E-TF80UM□-B12




| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-TF80UM□-B12      | 160    | 157 | 175 |

### ZP3E-TF100UM□-B12



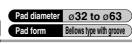
| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-TF100UM□-B12     | 198    | 194 | 224 |

### ZP3E-TF125UM□-B12



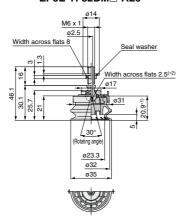
Pad material

ZP3E-TF125UM□-B12


N/U/CL

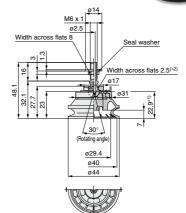
275

F


269 322

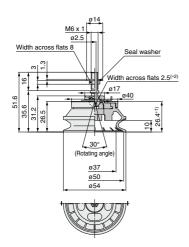






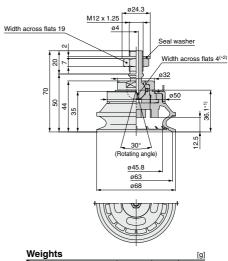

### ZP3E-TF32BM□-AL6




| Weights               |        |      | [g   |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-TF32BM□-AL6      | 40.0   | 39.5 | 43.6 |

### ZP3E-TF40BM□-AL6




| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-TF40BM□-AL6      | 44.0   | 43.1 | 50.0 |

### ZP3E-TF50BM□-AL6



| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-TF50BM□-AL6      | 65.6   | 64.1 | 76.1 |

### ZP3E-TF63BM□-AL12



| Weights               |        |     | [g  |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-TF63BM□-AL12     | 163    | 160 | 183 |

ZP3

ZP3E

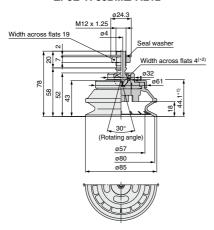
ZP2

ZP2V

ZΡ

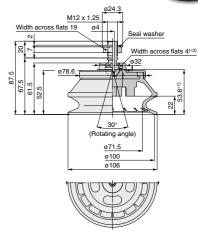
ZPT ZPR XT661

<sup>\*1)</sup> Center of the rotating angle


<sup>\*2)</sup> Position of the adapter mounting tool

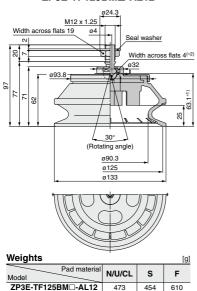
# Dimensions/With Ball Joint Adapter: Vacuum Inlet






### ZP3E-TF80BM□-AL12




| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-TF80BM□-AL12     | 208    | 203 | 243 |

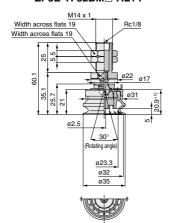
### ZP3E-TF100BM□-AL12



| Weights            |        |     | [g] |
|--------------------|--------|-----|-----|
| Pad material Model | N/U/CL | s   | F   |
| ZP3E-TF100BM□-AL12 | 316    | 305 | 388 |
|                    |        |     |     |

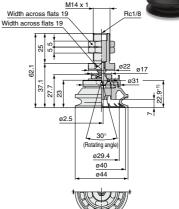
### ZP3E-TF125BM□-AL12




- \*1) Center of the rotating angle
- \*2) Position of the adapter mounting tool

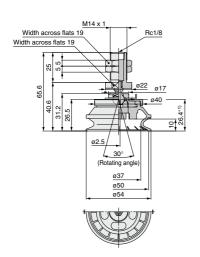






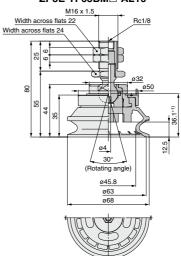

### ZP3E-TF32BM□-AL14




| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-TF32BM□-AL14     | 60.9   | 60.4 | 64.6 |

# ZP3E-TF40BM□-AL14




| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | S    | F    |
| ZP3E-TF40BM□-AL14     | 64.9   | 64.1 | 70.9 |

### ZP3E-TF50BM□-AL14

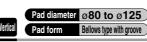


| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-TF50BM□-AL14     | 86.6   | 85.1 | 97.1 |

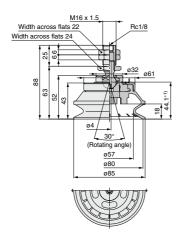
### ZP3E-TF63BM□-AL16



| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-TF63BM□-AL16     | 201    | 198 | 221 |

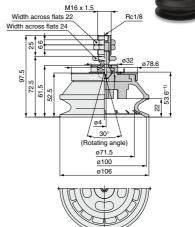



ZP3 ZP3E


ZP2 ZP2V

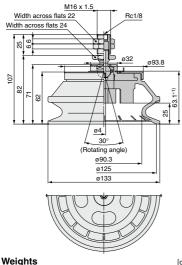
ZΡ

# Dimensions/With Ball Joint Male Thread Adapter: Vacuum Inlet




### ZP3E-TF80BM□-AL16




| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-TF80BM□-AL16     | 246    | 241 | 281 |

### ZP3E-TF100BM□-AL16

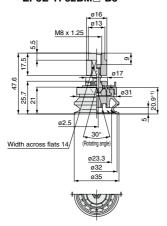


| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | S   | F   |
| ZP3E-TF100BM□-AL16    | 354    | 343 | 426 |

### ZP3E-TF125BM□-AL16

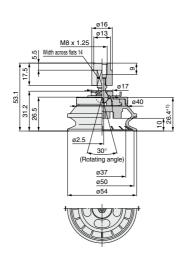


| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-TF125BM□-AL16    | 511    | 492 | 648 |



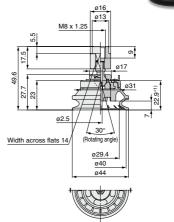




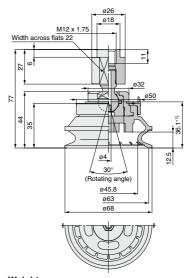






| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-TF32BM□-B8       | 42.9   | 42.4 | 46.5 |

### ZP3E-TF50BM□-B8




| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-TF50BM□-B8       | 68.5   | 67.0 | 79.0 |

### ZP3E-TF40BM□-B8



| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-TF40BM□-B8       | 46.9   | 46.0 | 52.9 |

### ZP3E-TF63BM□-B12



| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-TF63BM□-B12      | 168    | 165 | 188 |

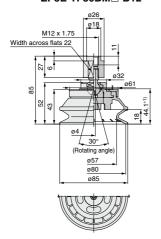
ZP3

ZP3E

ZP2

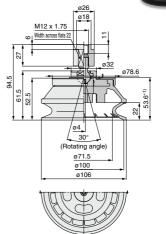
ZP2V

ZΡ


ZPT ZPR

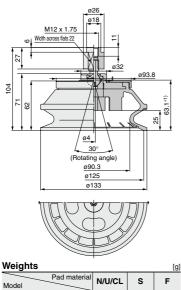
Dimensions/With Ball Joint Female Thread Adapter: Vacuum Inlet









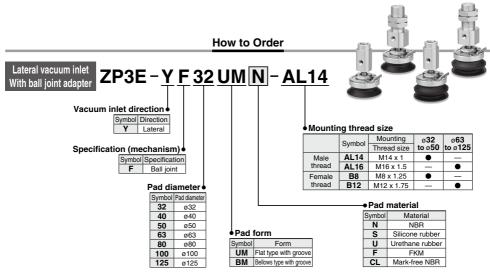


| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-TF80BM□-B12      | 213    | 208 | 248 |

### ZP3E-TF100BM□-B12



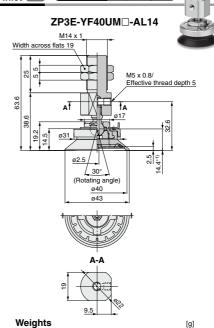
| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-TF100BM□-B12     | 321    | 310 | 393 |

### ZP3E-TF125BM□-B12




459

615


478

ZP3E-TF125BM□-B12



<sup>\*</sup> Refer to page 477 for replacement parts.





Pad material

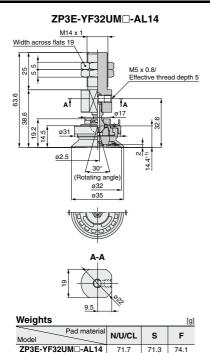
ZP3E-YF40UM□-AL14

N/U/CL

72.7

s

72.3 75.8


F

Pad diameter

Pad form

ø32. ø40

Flat type with groove



ZP3

ZP3E

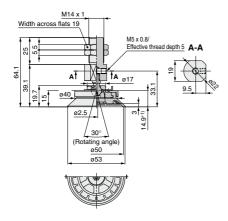
ZP2

ZP2V ZP

XT661

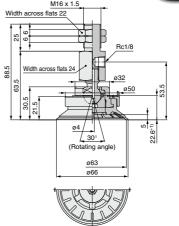


Mode


# Dimensions/With Ball Joint Male Thread Adapter: Vacuum Inlet

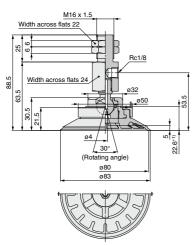






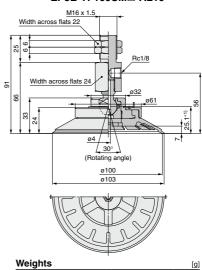

#### ZP3E-YF50UM□-AL14




| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-YF50UM□-AL14     | 90.8   | 90.0 | 96.3 |

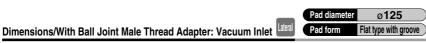
#### ZP3E-YF63UM□-AL16



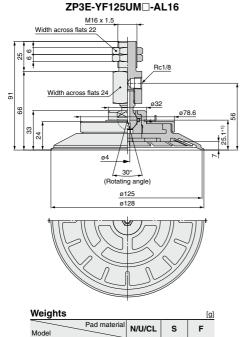

| Weights            |        |     | [g] |
|--------------------|--------|-----|-----|
| Pad material Model | N/U/CL | s   | F   |
| ZP3E-YF63UM□-AL16  | 291    | 290 | 302 |

#### ZP3E-YF80UM□-AL16




| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-YF80UM□-AL16     | 300    | 297 | 315 |

#### ZP3E-YF100UM□-AL16




| weights               |        |     | L9  |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-YF100UM□-AL16    | 338    | 334 | 364 |









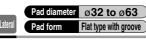
415

409

462

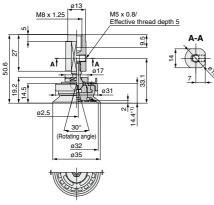
\*1) Center of the rotating angle

ZP3E-YF125UM□-AL16


ZP3

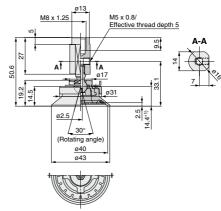
ZP3E ZP2

ZP2V


ZΡ ZPT ZPR

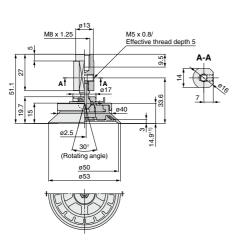
# Dimensions/With Ball Joint Female Thread Adapter: Vacuum Inlet





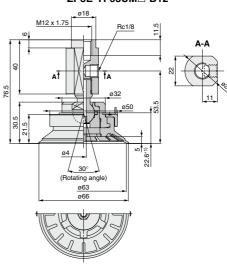

# ZP3E-YF32UM□-B8



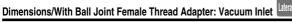

| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-YF32UM□-B8       | 45.1   | 44.7 | 47.5 |

#### ZP3E-YF40UM□-B8




| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-YF40UM□-B8       | 46.1   | 45.7 | 49.2 |

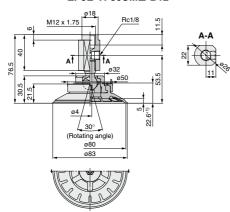
#### ZP3E-YF50UM□-B8




| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-YF50UM□-B8       | 64.2   | 63.4 | 69.7 |

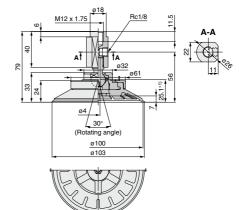
#### ZP3E-YF63UM□-B12




| Weights               |        |     | [g  |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-YF63UM□-B12      | 164    | 163 | 175 |

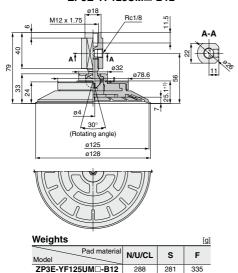







#### ZP3E-YF80UM□-B12




| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-YF80UM□-B12      | 172    | 170 | 188 |

#### ZP3E-YF100UM□-B12



| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-YF100UM□-B12     | 210    | 207 | 236 |

#### ZP3E-YF125UM□-B12

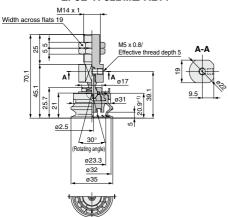


288

\*1) Center of the rotating angle

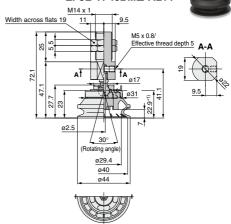
ZP3 ZP3E

ZP2 ZP2V


ZΡ

# Dimensions/With Ball Joint Male Thread Adapter: Vacuum Inlet





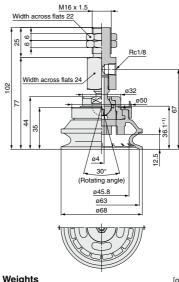

#### ZP3E-YF32BM□-AL14



| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-YF32BM□-AL14     | 60.9   | 60.4 | 64.6 |

#### ZP3E-YF40BM□-AL14




| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-YF40BM□-AL14     | 64.9   | 64.1 | 70.9 |

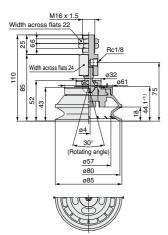
#### ZP3E-YF50BM□-AL14



| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-YF50BM□-AL14     | 86.6   | 85.1 | 97.1 |

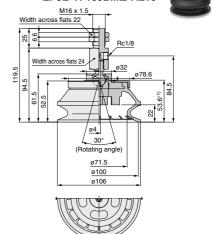
#### ZP3E-YF63BM□-AL16




| weights            |        |     | lg. |
|--------------------|--------|-----|-----|
| Pad material Model | N/U/CL | s   | F   |
| ZP3E-YF63BM□-AL16  | 201    | 198 | 221 |

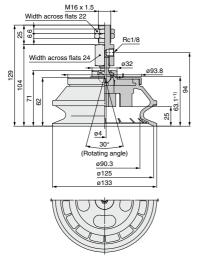





# <u>Dimensions/With Ball Joint Male Thread Adapter: Vacuum Inlet</u>

#### ZP3E-YF80BM□-AL16




| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-YF80BM□-AL16     | 246    | 241 | 281 |

#### ZP3E-YF100BM□-AL16



| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-YF100BM□-AL16    | 354    | 343 | 426 |

#### ZP3E-YF125BM□-AL16

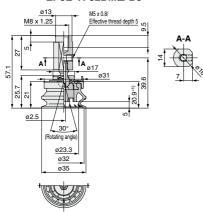


| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-YF125BM□-AL16    | 511    | 492 | 648 |

ZP3

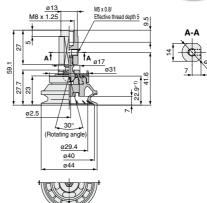
ZP3E ZP2

ZP2V ZΡ


ZPT ZPR XT661

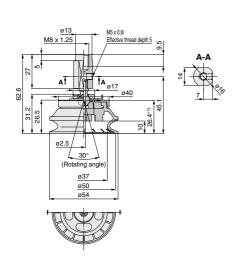
# Dimensions/With Ball Joint Female Thread Adapter: Vacuum Inlet





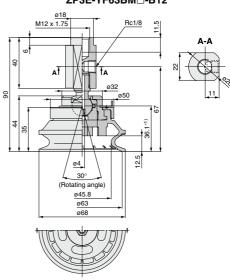

#### ZP3E-YF32BM□-B8




| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-YF32BM□-B8       | 42.9   | 42.4 | 46.5 |

#### ZP3E-YF40BM□-B8




| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-YF40BM□-B8       | 46.9   | 46.0 | 52.9 |

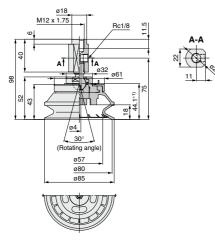
#### ZP3E-YF50BM□-B8



| Weights               |        |      | [g]  |
|-----------------------|--------|------|------|
| Pad material<br>Model | N/U/CL | s    | F    |
| ZP3E-YF50BM□-B8       | 68.5   | 67.0 | 79.0 |

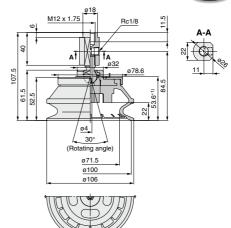
#### ZP3E-YF63BM□-B12




| weights               |        |     | lg. |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-YF63BM□-B12      | 168    | 165 | 188 |

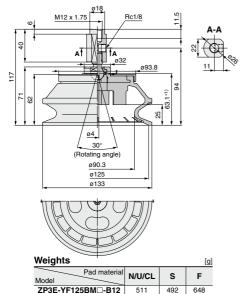







#### ZP3E-YF80BM□-B12




| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-YF80BM□-B12      | 213    | 208 | 248 |

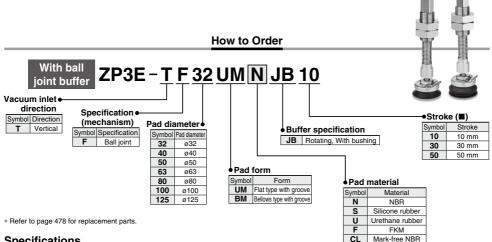
#### ZP3E-YF100BM□-B12



| Weights               |        |     | [g] |
|-----------------------|--------|-----|-----|
| Pad material<br>Model | N/U/CL | s   | F   |
| ZP3E-YF100BM□-B12     | 354    | 343 | 426 |

#### ZP3E-YF125BM□-B12

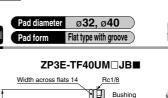



ZP3

ZP3E ZP2

ZP2V ZP

ZPT ZPR XT661






#### **Specifications**

| Buffer        | Pad         | Mounting  | Tightening torque | Stroke | Spring react | tive force [N] |
|---------------|-------------|-----------|-------------------|--------|--------------|----------------|
| specification | diameter    | wounting  | [N·m]             | [mm]   | At 0 stroke  | At full stroke |
|               |             |           |                   | 10     | 5            | 6.5            |
|               | ø32 to ø50  | M18 x 1.5 | 28 to 32          | 30     | 5            | 8.5            |
| Datatina.     |             |           |                   | 50     | 5            | 10.5           |
| Rotating      |             |           |                   | 10     | 10           | 11.5           |
|               | ø63 to ø125 | M22 x 1.5 | 45 to 50          | 30     | 10           | 13.5           |
|               |             |           |                   | 50     | 10           | 15.5           |





Bushing

M18 x 1.5

## ZP3E-TF32UM□JB■ Width across flats 14 Rc1/8 Bushing 32 Bushing m Width across flats 27 M<sub>18</sub> x 1.5 Width across flats 14 14.5 <u>ø2</u>.5 L30°. (Rotating angle ø32 ø35

#### **Dimensions**

| Model            | _     | В     | Weight [g]/Pad material |     |     |  |
|------------------|-------|-------|-------------------------|-----|-----|--|
| Model            |       |       | N/U/CL                  | S   | F   |  |
| ZP3E-TF32UM□JB10 | 71.1  | 123.1 | 204                     | 204 | 207 |  |
| ZP3E-TF32UM□JB30 | 96.1  | 148.1 | 219                     | 218 | 221 |  |
| ZP3E-TF32UM□JB50 | 116.1 | 168.1 | 230                     | 230 | 233 |  |

#### **Dimensions**

32

Width across flats 27

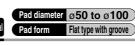
14.5

Width across flats 14

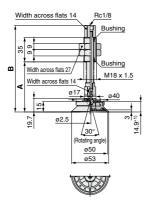
<u>ø2.</u>5

m

| Model            |       | В      | Weight [g]/Pad material |     |     |
|------------------|-------|--------|-------------------------|-----|-----|
| woder            | AB    | N/U/CL | S                       | F   |     |
| ZP3E-TF40UM□JB10 | 71.1  | 123.1  | 205                     | 205 | 208 |
| ZP3E-TF40UM□JB30 | 96.1  | 148.1  | 220                     | 219 | 223 |
| ZP3E-TF40UM□JB50 | 116.1 | 168.1  | 231                     | 231 | 234 |


\_30°\_\ (Rotating angle)

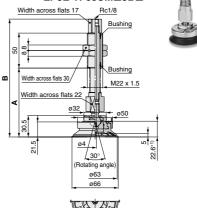
ø40


a43

<sup>\*1)</sup> Center of the rotating angle



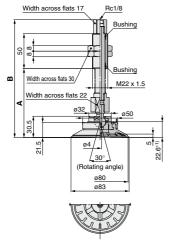



#### ZP3E-TF50UM□JB■



#### **Dimensions**

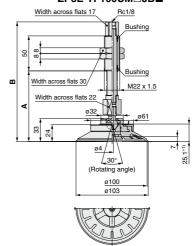
| Model            | Α     | , в   | Weight [g]/Pad material |     |     |
|------------------|-------|-------|-------------------------|-----|-----|
| Model            | _ A   |       | N/U/CL                  | S   | F   |
| ZP3E-TF50UM□JB10 | 71.6  | 123.6 | 223                     | 222 | 229 |
| ZP3E-TF50UM□JB30 | 96.6  | 148.6 | 238                     | 237 | 243 |
| ZP3E-TF50UM□JB50 | 116.6 | 168.6 | 249                     | 249 | 255 |


#### ZP3E-TF63UM□JB■



#### **Dimensions**

| Model            | Α     | В     | Weight [g]/Pad material |     |     |
|------------------|-------|-------|-------------------------|-----|-----|
| Wodel            | _ A   | -     | N/U/CL                  | S   | F   |
| ZP3E-TF63UM□JB10 | 98.5  | 168.5 | 434                     | 433 | 445 |
| ZP3E-TF63UM□JB30 | 123.5 | 193.5 | 464                     | 462 | 474 |
| ZP3E-TF63UM□JB50 | 143.5 | 213.5 | 487                     | 485 | 497 |


#### ZP3E-TF80UM□JB■



#### **Dimensions**

| Model            | Α     |       | Weight [g]/Pad materia |     |     |
|------------------|-------|-------|------------------------|-----|-----|
| Model            | ^     |       | N/U/CL                 | S   | F   |
| ZP3E-TF80UM□JB10 | 98.5  | 168.5 | 443                    | 441 | 458 |
| ZP3E-TF80UM□JB30 | 123.5 | 193.5 | 472                    | 470 | 487 |
| ZP3E-TF80UM□JB50 | 143.5 | 213.5 | 495                    | 493 | 510 |

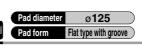
#### ZP3E-TF100UM□JB■



#### **Dimensions**

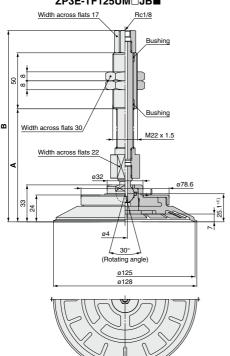
| Dillielisiolis    |     |                         |        |     |     |
|-------------------|-----|-------------------------|--------|-----|-----|
| Model             | АВ  | Weight [g]/Pad material |        |     |     |
| Model             | _ ^ | В                       | N/U/CL | S   | F   |
| ZP3E-TF100UM□JB10 | 101 | 171                     | 481    | 477 | 507 |
| ZP3E-TF100UM□JB30 | 126 | 196                     | 510    | 506 | 536 |
| ZP3E-TF100UM□JB50 | 146 | 216                     | 533    | 529 | 559 |

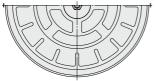
ZP3


ZP3E

ZP2

ZP2V


ZΡ

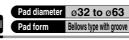

# Dimensions/With Ball Joint Buffer: Vacuum Inlet



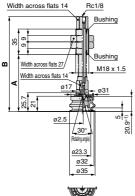


## ZP3E-TF125UM□JB■






#### **Dimensions**

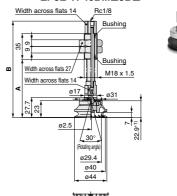

| Model             | Α   | В   | Weight [g]/Pad material |     |     |
|-------------------|-----|-----|-------------------------|-----|-----|
| Model             | _ ^ |     | N/U/CL                  | S   | F   |
| ZP3E-TF125UM□JB10 | 101 | 171 | 558                     | 552 | 605 |
| ZP3E-TF125UM□JB30 | 126 | 196 | 588                     | 581 | 634 |
| ZP3E-TF125UM□JB50 | 146 | 216 | 610                     | 604 | 657 |

<sup>\*1)</sup> Center of the rotating angle





#### ZP3E-TF32BM□JB■

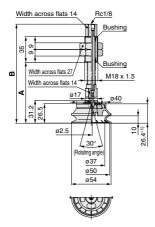





#### **Dimensions**

| Model            | Α     | В     | Weight | [g]/Pad r | naterial |
|------------------|-------|-------|--------|-----------|----------|
| Model            | A     |       | N/U/CL | S         | F        |
| ZP3E-TF32BM□JB10 | 77.6  | 129.6 | 206    | 206       | 210      |
| ZP3E-TF32BM□JB30 | 102.6 | 154.6 | 221    | 220       | 224      |
| ZP3E-TF32BM□JB50 | 122.6 | 174.6 | 232    | 232       | 236      |

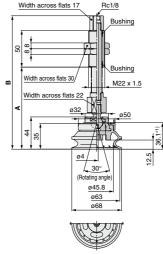
## ZP3E-TF40BM□JB■






#### **Dimensions**

| Model            | А В   | A B   | Weight [g]/Pad material |     |     |
|------------------|-------|-------|-------------------------|-----|-----|
| Model            | ^     | -     | N/U/CL                  | S   | F   |
| ZP3E-TF40BM□JB10 | 79.6  | 131.6 | 210                     | 209 | 216 |
| ZP3E-TF40BM□JB30 | 104.6 | 156.6 | 225                     | 224 | 231 |
| ZP3E-TF40BM□JB50 | 124.6 | 176.6 | 236                     | 235 | 242 |


#### ZP3E-TF50BM□JB■



#### **Dimensions**

| Model            | Α     |       | Weight [g]/Pad materia |     |     |
|------------------|-------|-------|------------------------|-----|-----|
| Model            | _ A   |       | N/U/CL                 | S   | F   |
| ZP3E-TF50BM□JB10 | 83.1  | 135.1 | 232                    | 230 | 242 |
| ZP3E-TF50BM□JB30 | 108.1 | 160.1 | 246                    | 245 | 257 |
| ZP3E-TF50BM□JB50 | 128.1 | 180.1 | 258                    | 256 | 268 |

#### ZP3E-TF63BM□JB■

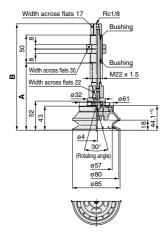


#### **Dimensions**

| Model            | A   | В   | Weight [g]/Pad material |     |     |
|------------------|-----|-----|-------------------------|-----|-----|
| iviodei          | _ ^ |     | N/U/CL                  | S   | F   |
| ZP3E-TF63BM□JB10 | 112 | 182 | 451                     | 448 | 471 |
| ZP3E-TF63BM□JB30 | 137 | 207 | 480                     | 477 | 501 |
| ZP3E-TF63BM□JB50 | 157 | 227 | 503                     | 500 | 523 |

ZP3

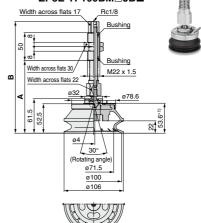
ZP3E ZP2


ZP2V

ZΡ

# Dimensions/With Ball Joint Buffer: Vacuum Inlet

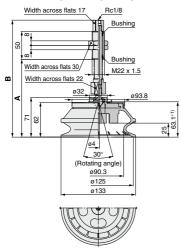



#### ZP3E-TF80BM□JB■



#### **Dimensions**

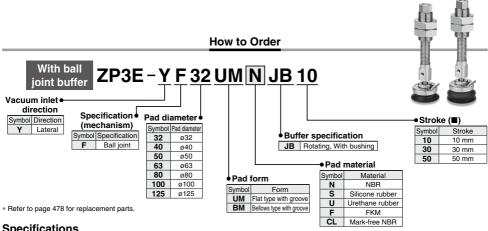
| Model            | А   | В      | Weight [g]/Pad material |     |     |
|------------------|-----|--------|-------------------------|-----|-----|
| Model            |     | N/U/CL | S                       | F   |     |
| ZP3E-TF80BM□JB10 | 120 | 190    | 496                     | 491 | 531 |
| ZP3E-TF80BM□JB30 | 145 | 215    | 525                     | 520 | 561 |
| ZP3E-TF80BM□JB50 | 165 | 235    | 548                     | 543 | 583 |


#### ZP3E-TF100BM□JB■



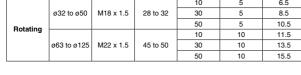
#### **Dimensions**

| Model             | A     | В     | Weight [g]/Pad material |     |     |  |
|-------------------|-------|-------|-------------------------|-----|-----|--|
| wodei             |       |       | N/U/CL                  | S   | F   |  |
| ZP3E-TF100BM□JB10 | 129.5 | 199.5 | 604                     | 593 | 676 |  |
| ZP3E-TF100BM□JB30 | 154.5 | 224.5 | 633                     | 622 | 705 |  |
| ZP3E-TF100BM□JB50 | 174.5 | 244.5 | 656                     | 645 | 728 |  |

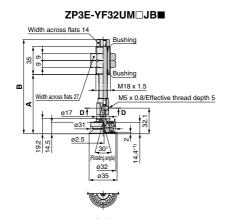

#### ZP3E-TF125BM□JB■



#### **Dimensions**


| Model             |       | в   | Weight | [g]/Pad ı | material |
|-------------------|-------|-----|--------|-----------|----------|
| Model             | A   B | -   | N/U/CL | S         | F        |
| ZP3E-TF125BM□JB10 | 139   | 209 | 761    | 742       | 898      |
| ZP3E-TF125BM□JB30 | 164   | 234 | 790    | 771       | 927      |
| ZP3E-TF125BM□JB50 | 184   | 254 | 813    | 794       | 950      |

<sup>\*1)</sup> Center of the rotating angle




## **Specifications**

| Buffer        | Pad Management        |           | Tightening torque | Stroke | Spring reactive force [N] |                |  |
|---------------|-----------------------|-----------|-------------------|--------|---------------------------|----------------|--|
| specification | diameter              | Mounting  | [N·m]             | [mm]   | At 0 stroke               | At full stroke |  |
|               | ø32 to ø50 M18 x 1.5  |           |                   | 10     | 5                         | 6.5            |  |
|               |                       | M18 x 1.5 | 28 to 32          | 30     | 5                         | 8.5            |  |
| Rotating      |                       |           | 50                | 5      | 10.5                      |                |  |
| notating      | ø63 to ø125 M22 x 1.5 |           | 10                | 10     | 11.5                      |                |  |
|               |                       | 45 to 50  | 30                | 10     | 13.5                      |                |  |
|               |                       |           | 50                | 10     | 15.5                      |                |  |



## **Dimensions/With Ball Joint Buffer: Vacuum Inlet**



#### **Dimensions**

| Model            | Α     |       | Weight [g]/Pad material |     |     |  |  |  |
|------------------|-------|-------|-------------------------|-----|-----|--|--|--|
| wodei            |       |       | N/U/CL                  | S   | F   |  |  |  |
| ZP3E-YF32UM□JB10 | 74.1  | 118.1 | 202                     | 202 | 204 |  |  |  |
| ZP3E-YF32UM□JB30 | 99.1  | 143.1 | 218                     | 218 | 221 |  |  |  |
| ZP3E-YF32UM□JB50 | 119.1 | 163.1 | 231                     | 230 | 233 |  |  |  |

#### ZP3E-YF40UM□JB■ Width across flats 14 Bushing 33 Bushing M18 x 1.5 M5 x 0.8/Effective thread depth 5 ø31 ø2.5 19.2 /30° (Rotating angle

ø32, ø40 Flat type with groove

Pad diameter

Pad form



ø40 ø43

| ١ |
|---|
|   |

#### **Dimensions**

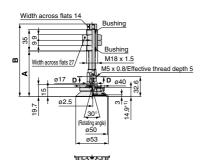
œ

| Model            |       |       | Weight | [g]/Pad r | material |
|------------------|-------|-------|--------|-----------|----------|
| Model            | A     |       | N/U/CL | S         | F        |
| ZP3E-YF40UM□JB10 | 74.1  | 118.1 | 203    | 203       | 206      |
| ZP3E-YF40UM□JB30 | 99.1  | 143.1 | 219    | 219       | 222      |
| ZP3E-YF40UM□JB50 | 119.1 | 163.1 | 232    | 231       | 235      |

ZP3


ZP3E ZP2

ZP2V

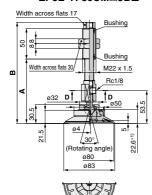

ZΡ

<sup>\*1)</sup> Center of the rotating angle

# Dimensions/With Ball Joint Buffer: Vacuum Inlet



#### ZP3E-YF50UM□JB■

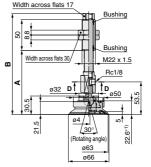





#### **Dimensions**

| Model            | Α     | В     | Weight | [g]/Pad ı | material |
|------------------|-------|-------|--------|-----------|----------|
| Model            | _ ^   | - P   | N/U/CL | S         | F        |
| ZP3E-YF50UM□JB10 | 74.6  | 118.6 | 221    | 220       | 227      |
| ZP3E-YF50UM□JB30 | 99.6  | 143.6 | 237    | 236       | 243      |
| ZP3E-YF50UM□JB50 | 119.6 | 163.6 | 250    | 249       | 255      |

#### ZP3E-YF80UM□JB■



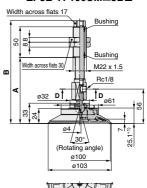



#### Dimensions

| Model            | A B |     | Weight [g]/Pad material |     |     |  |
|------------------|-----|-----|-------------------------|-----|-----|--|
| Model            | Α . | В   | N/U/CL                  | S   | F   |  |
| ZP3E-YF80UM□JB10 | 105 | 165 | 444                     | 442 | 459 |  |
| ZP3E-YF80UM□JB30 | 130 | 190 | 475                     | 473 | 490 |  |
| ZP3E-YF80UM□JB50 | 150 | 210 | 500                     | 498 | 515 |  |

#### Width across flats 17




ZP3E-YF63UM□JB■

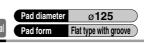


#### **Dimensions**

| Model            | АВ  |          | Weight | [g]/Pad r | material |
|------------------|-----|----------|--------|-----------|----------|
| wodei            | Α . | <b>₽</b> | N/U/CL | S         | F        |
| ZP3E-YF63UM□JB10 | 105 | 165      | 436    | 434       | 446      |
| ZP3E-YF63UM□JB30 | 130 | 190      | 467    | 465       | 477      |
| ZP3E-YF63UM□JB50 | 150 | 210      | 492    | 490       | 502      |
|                  |     |          | •      |           |          |

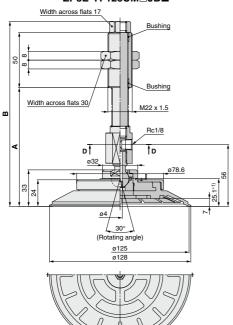
#### ZP3E-YF100UM□JB■








#### **Dimensions**


| Model             |       |       | ь      | Weight | [g]/Pad r | material |
|-------------------|-------|-------|--------|--------|-----------|----------|
| Wodel             | A   1 |       | N/U/CL | S      | F         |          |
| ZP3E-YF100UM□JB10 | 107.5 | 167.5 | 482    | 478    | 508       |          |
| ZP3E-YF100UM□JB30 | 132.5 | 192.5 | 513    | 509    | 539       |          |
| ZP3E-YF100UM□JB50 | 152.5 | 212.5 | 538    | 534    | 564       |          |

# Dimensions/With Ball Joint Buffer: Vacuum Inlet





#### ZP3E-YF125UM□JB■





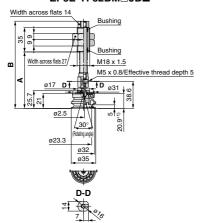
#### **Dimensions**

| Model             | Α     | В     | Weight | [g]/Pad i | material |
|-------------------|-------|-------|--------|-----------|----------|
| Model             | ^     |       | N/U/CL | S         | F        |
| ZP3E-YF125UM□JB10 | 107.5 | 167.5 | 559    | 553       | 606      |
| ZP3E-YF125UM□JB30 | 132.5 | 192.5 | 591    | 584       | 637      |
| ZP3E-YF125UM□JB50 | 152.5 | 212.5 | 616    | 609       | 662      |

\*1) Center of the rotating angle

ZP3

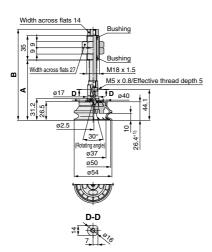
ZP3E


ZP2 ZP2V

ZΡ

# Dimensions/With Ball Joint Buffer: Vacuum Inlet



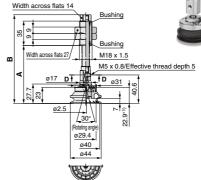

#### ZP3E-YF32BM□JB■



#### **Dimensions**

| Model            |       |       |        |     |     |  | Λ. | Α | В | Weight | [g]/Pad r | material |
|------------------|-------|-------|--------|-----|-----|--|----|---|---|--------|-----------|----------|
| Model            | ^     | -     | N/U/CL | S   | F   |  |    |   |   |        |           |          |
| ZP3E-YF32BM□JB10 | 80.6  | 124.6 | 204    | 203 | 208 |  |    |   |   |        |           |          |
| ZP3E-YF32BM□JB30 | 105.6 | 149.6 | 220    | 220 | 224 |  |    |   |   |        |           |          |
| ZP3E-YF32BM□JB50 | 125.6 | 169.6 | 233    | 232 | 236 |  |    |   |   |        |           |          |

#### ZP3E-YF50BM□JB■

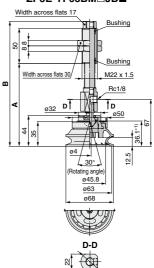



#### **Dimensions**

| Model            |       | В     | Weight [g]/Pad material |     |     |
|------------------|-------|-------|-------------------------|-----|-----|
| Model            | A     | P     | N/U/CL                  | S   | F   |
| ZP3E-YF50BM□JB10 | 86.1  | 130.1 | 230                     | 228 | 240 |
| ZP3E-YF50BM□JB30 | 111.1 | 155.1 | 246                     | 244 | 256 |
| ZP3E-YF50BM□JB50 | 131.1 | 175.1 | 258                     | 257 | 269 |

#### \*1) Center of the rotating angle

# ZP3E-YF40BM□JB■ oss flats 14



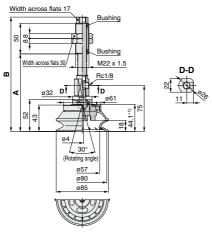

# D-D

#### **Dimensions**

| Model            | Α     | В     | Weight [g]/Pad material |     |     |
|------------------|-------|-------|-------------------------|-----|-----|
| woder            | ^     | A   B | N/U/CL                  | S   | F   |
| ZP3E-YF40BM□JB10 | 82.6  | 126.6 | 208                     | 207 | 214 |
| ZP3E-YF40BM□JB30 | 107.6 | 151.6 | 224                     | 223 | 230 |
| ZP3E-YF40BM□JB50 | 127.6 | 171.6 | 237                     | 236 | 243 |

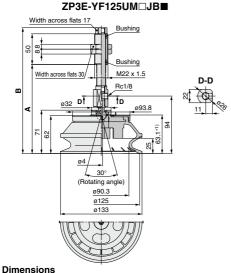
#### ZP3E-YF63BM□JB■



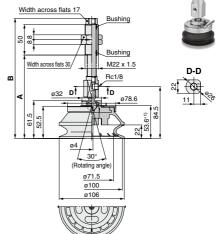

#### Dimensions

| Model            |       | В      | Weight [g]/Pad material |     |     |
|------------------|-------|--------|-------------------------|-----|-----|
| Model            | AB    | N/U/CL | S                       | F   |     |
| ZP3E-YF63BM□JB10 | 118.5 | 178.5  | 452                     | 449 | 472 |
| ZP3E-YF63BM□JB30 | 143.5 | 203.5  | 483                     | 480 | 504 |
| ZP3E-YF63BM□JB50 | 163.5 | 223.5  | 508                     | 505 | 529 |






#### ZP3E-YF80BM□JB■




#### **Dimensions**

| Model            | A B Weight [g]/Pad ma |       | material |     |     |
|------------------|-----------------------|-------|----------|-----|-----|
| Model            | ^                     | -     | N/U/CL   | S   | F   |
| ZP3E-YF80BM□JB10 | 126.5                 | 186.5 | 497      | 492 | 532 |
| ZP3E-YF80BM□JB30 | 151.5                 | 211.5 | 529      | 524 | 564 |
| ZP3E-YF80BM□JB50 | 171.5                 | 231.5 | 553      | 548 | 589 |



#### ZP3E-YF100BM□JB■



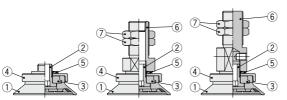
#### **Dimensions**

| Model             | Α     | В      | Weight [g]/Pad material |     |     |
|-------------------|-------|--------|-------------------------|-----|-----|
| Model             | ^   P | N/U/CL | S                       | F   |     |
| ZP3E-YF100BM□JB10 | 136   | 196    | 605                     | 594 | 677 |
| ZP3E-YF100BM□JB30 | 161   | 221    | 636                     | 625 | 708 |
| ZP3E-YF100BM□JB50 | 181   | 241    | 661                     | 650 | 733 |

ZP3

ZP3E

ZP2 ZP2V

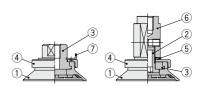

ZΡ

| Model             |       | В     | Weight [g]/Pad material |     |     |
|-------------------|-------|-------|-------------------------|-----|-----|
| Woder             | Α .   | Ь     | N/U/CL                  | S   | F   |
| ZP3E-YF125BM□JB10 | 145.5 | 205.5 | 762                     | 743 | 899 |
| ZP3E-YF125BM□JB30 | 170.5 | 230.5 | 793                     | 774 | 930 |
| ZP3E-YF125BM□JB50 | 190.5 | 250.5 | 818                     | 799 | 955 |

# **ZP3E** Series Construction

#### Pad with Adapter

#### Male thread




With set screw

With male thread adapter (Vacuum inlet: Vertical)

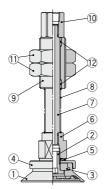
With male thread adapter (Vacuum inlet: Lateral)

#### Female thread

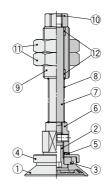


With female thread plate With female thread adapter (Vacuum inlet: Vertical) (Vacuum inlet: Lateral)

#### Component Parts (Male thread)


|  | No.                                                                                   | Description | Material (Surface treatment)                  | Note                      |  |  |
|--|---------------------------------------------------------------------------------------|-------------|-----------------------------------------------|---------------------------|--|--|
|  |                                                                                       |             | NBR, Silicone rubber,                         | Pad form: Flat type       |  |  |
|  | 1                                                                                     | Vacuum pad  | Urethane rubber, FKM,                         | with groove, Bellows      |  |  |
|  |                                                                                       | · ·         | Mark-free NBR                                 | type with groove          |  |  |
|  | 2                                                                                     | Set screw   | Brass (Electroless nickel plating)            |                           |  |  |
|  | 3                                                                                     | Plate       | Aluminum alloy (Clear anodized)               |                           |  |  |
|  | 4                                                                                     | Holder      | Aluminum alloy (Clear anodized)               | Pad diameter: ø32 to ø50  |  |  |
|  | 4                                                                                     |             | Structural steel (Electroless nickel plating) | Pad diameter: ø63 to ø125 |  |  |
|  | 5                                                                                     | Seal washer | Steel strip/NBR                               |                           |  |  |
|  | 6                                                                                     | Adapter     | Aluminum alloy (Clear anodized)               | Pad diameter: ø32 to ø50  |  |  |
|  | 0                                                                                     |             | Brass (Electroless nickel plating)            |                           |  |  |
|  | 7                                                                                     | Nut         | Brass (Electroless nickel plating)            |                           |  |  |
|  |                                                                                       | Nut         | Structural steel (Nickel plating)             | Pad diameter: ø63 to ø125 |  |  |
|  | * ② to ③ are used for both the flat type with groove and the bellows type with groove |             |                                               |                           |  |  |

<sup>\*</sup> ② to ⑦ are used for both the flat type with groove and the bellows type with groove.


#### Component Parts (Female thread)

| No. | Description | Material (Surface treatment)                                    | Note                                                                                                               |  |  |  |
|-----|-------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1   | Vacuum pad  | NBR, Silicone rubber,<br>Urethane rubber, FKM,<br>Mark-free NBR | Pad form: Flat type<br>with groove, Bellows<br>type with groove                                                    |  |  |  |
| 2   | Set screw   | Brass (Electroless nickel plating)                              |                                                                                                                    |  |  |  |
| 3   | Plate       | Aluminum alloy (Clear anodized)                                 |                                                                                                                    |  |  |  |
| 4   | Holder      | Aluminum alloy<br>(Clear anodized)                              | With female thread plate:<br>Pad diameter: ø32 to ø125     With female thread adapter:<br>Pad diameter: ø32 to ø50 |  |  |  |
|     |             | Structural steel<br>(Electroless nickel plating)                | With female thread adapter:<br>Pad diameter: ø63 to ø125                                                           |  |  |  |
| 5   | Seal washer | Steel strip/NBR                                                 |                                                                                                                    |  |  |  |
| 6   | Adapter     | Aluminum alloy (Clear anodized)                                 |                                                                                                                    |  |  |  |
| 7   | Stopper     | Stainless steel                                                 |                                                                                                                    |  |  |  |
|     |             |                                                                 |                                                                                                                    |  |  |  |

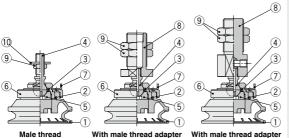
#### Pad with Buffer



With buffer (Vacuum inlet: Vertical)



With buffer (Vacuum inlet: Lateral)

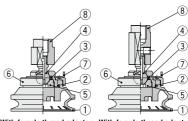

#### Component

| Component Parts |                |                                                           |                                                           |  |  |  |  |
|-----------------|----------------|-----------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|
| No.             | Description    | Material (Surface treatment)                              | Note                                                      |  |  |  |  |
| 1               | Vacuum pad     | NBR, Silicone rubber, Urethane rubber, FKM, Mark-free NBR | Pad form: Flat type with groove, Bellows type with groove |  |  |  |  |
| 2               | Set screw      | Brass (Electroless nickel plating)                        |                                                           |  |  |  |  |
| 3               | Plate          | Aluminum alloy (Clear anodized)                           |                                                           |  |  |  |  |
| 4               | Holder         | Aluminum alloy (Clear anodized)                           | Pad diameter: ø32 to ø50                                  |  |  |  |  |
| -               | Holder         | Structural steel (Electroless nickel plating)             | Pad diameter: ø63 to ø125                                 |  |  |  |  |
| 5               | Seal washer    | Soft iron/NBR (Zinc chromated)                            |                                                           |  |  |  |  |
| 6               | Adapter        | Aluminum alloy (Clear anodized)                           |                                                           |  |  |  |  |
| 7               | Piston rod     | Structural steel (Hard chrome plating)                    |                                                           |  |  |  |  |
| 8               | Return spring  | Stainless steel                                           |                                                           |  |  |  |  |
| 9               | Buffer body    | Brass (Electroless nickel plating)                        |                                                           |  |  |  |  |
| 10              | Buffer adapter | Brass (Electroless nickel plating)                        |                                                           |  |  |  |  |
| 11              | Nut            | Structural steel (Nickel plating)                         |                                                           |  |  |  |  |
| 12              | Bushing        |                                                           |                                                           |  |  |  |  |

<sup>\*</sup> ② to ② are used for both the flat type with groove and the bellows type with groove.

#### Pad with Ball Joint Adapter

#### ø32 to ø50 Male thread




(for direct mounting)

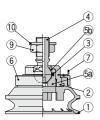
With male thread adapter (Vacuum inlet: Vertical)

(Vacuum inlet: Lateral)

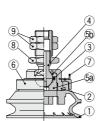
#### Female thread



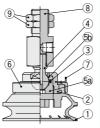
With female thread adapter (Vacuum inlet: Vertical)


With female thread adapter (Vacuum inlet: Lateral)

#### **Component Parts**

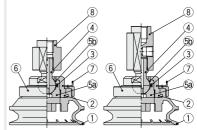

| No. | Description | Material (Surface treatment)                              | Note                                                      |
|-----|-------------|-----------------------------------------------------------|-----------------------------------------------------------|
| 1   | Vacuum pad  | NBR, Silicone rubber, Urethane rubber, FKM, Mark-free NBR | Pad form: Flat type with groove, Bellows type with groove |
| 2   | Plate       | Stainless steel                                           |                                                           |
| 3   | O-ring      | FKM                                                       |                                                           |
| 4   | Shaft       | Stainless steel                                           |                                                           |
| 5   | Shaft ring  | Stainless steel                                           |                                                           |
| 6   | Holder      | Aluminum alloy (Clear anodized)                           |                                                           |
| 7   | Stopper     | Stainless steel                                           |                                                           |
| 8   | Adapter     | Aluminum alloy (Clear anodized)                           |                                                           |
| 9   | Nut         | Brass (Electroless nickel plating)                        |                                                           |
| 10  | Seal washer | Soft iron/NBR (Zinc chromated)                            |                                                           |

<sup>\* 2</sup> to 10 are used for both the flat type with groove and the bellows type with groove.


#### ø63 to ø125 Male thread



Male thread (for direct mounting)




With male thread adapter With male thread adapter (Vacuum inlet: Vertical)



(Vacuum inlet: Lateral)

#### Female thread



With female thread adapter (Vacuum inlet: Vertical)

With female thread adapter (Vacuum inlet: Lateral)

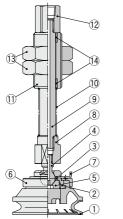
#### Component Parts (Male thread)

| No. | Description  | Material (Surface treatment)                                           | Note                                                            |
|-----|--------------|------------------------------------------------------------------------|-----------------------------------------------------------------|
| 1   | Vacuum pad   | NBR, Silicone rubber,<br>Urethane rubber, FKM,<br>Mark-free NBR        | Pad form: Flat type<br>with groove, Bellows<br>type with groove |
| 2   | Plate        | Aluminum alloy (Clear anodized)                                        |                                                                 |
| 3   | O-ring       | FKM                                                                    |                                                                 |
| 4   | Shaft        | Stainless steel                                                        |                                                                 |
| 5a  | Shaft ring A | Stainless steel                                                        |                                                                 |
| 5b  | Shaft ring B | Stainless steel                                                        |                                                                 |
| 6   | Holder       | Aluminum alloy (Clear anodized)                                        |                                                                 |
| 7   | Stopper      | Stainless steel                                                        |                                                                 |
| 8   | Adapter      | Brass (Electroless nickel plating)                                     |                                                                 |
| 9   | Nut          | Structural steel (Nickel plating)<br>Structural steel (Zinc chromated) |                                                                 |
| 10  | Seal washer  | Soft iron/NRR (Zinc chromated)                                         |                                                                 |

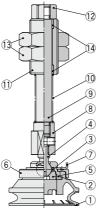
<sup>\* 2</sup> to 10 are used for both the flat type with groove and the bellows type with groove.

#### Component Parts (Female thread)

| ••• | o component a de (i comano ambada) |                                                                 |                                                                 |  |  |  |  |  |
|-----|------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|--|
| No. | Description                        | Material (Surface treatment)                                    | Note                                                            |  |  |  |  |  |
| 1   | Vacuum pad                         | NBR, Silicone rubber,<br>Urethane rubber, FKM,<br>Mark-free NBR | Pad form: Flat type<br>with groove, Bellows<br>type with groove |  |  |  |  |  |
| 2   | Plate                              | Aluminum alloy (Clear anodized)                                 |                                                                 |  |  |  |  |  |
| 3   | O-ring                             | FKM                                                             |                                                                 |  |  |  |  |  |
| 4   | Shaft                              | Stainless steel                                                 |                                                                 |  |  |  |  |  |
| 5a  | Shaft ring A                       | Stainless steel                                                 |                                                                 |  |  |  |  |  |
| 5b  | Shaft ring B                       | Stainless steel                                                 |                                                                 |  |  |  |  |  |
| 6   | Holder                             | Aluminum alloy (Clear anodized)                                 |                                                                 |  |  |  |  |  |
| 7   | Stopper                            | Stainless steel                                                 |                                                                 |  |  |  |  |  |
| 8   | Adapter                            | Aluminum alloy (Clear anodized)                                 |                                                                 |  |  |  |  |  |
|     |                                    |                                                                 |                                                                 |  |  |  |  |  |




ZP3 ZP3E ZP2 ZP2V


ZΡ

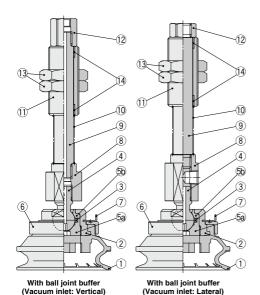
#### Pad with Ball Joint Buffer

#### ø32 to ø50



With ball joint buffer (Vacuum inlet: Vertical)




With ball joint buffer (Vacuum inlet: Lateral)

#### **Component Parts**

| No. | Description    | Material (Surface treatment)           | Note                 |
|-----|----------------|----------------------------------------|----------------------|
|     |                | NBR, Silicone rubber,                  | Pad form: Flat type  |
| 1   | Vacuum pad     | Urethane rubber, FKM,                  | with groove, Bellows |
|     |                | Mark-free NBR                          | type with groove     |
| 2   | Plate          | Stainless steel                        |                      |
| 3   | O-ring         | FKM                                    |                      |
| 4   | Shaft          | Stainless steel                        |                      |
| 5   | Shaft ring     | Stainless steel                        |                      |
| 6   | Holder         | Aluminum alloy (Clear anodized)        |                      |
| 7   | Stopper        | Stainless steel                        |                      |
| 8   | Adapter        | Aluminum alloy (Clear anodized)        |                      |
| 9   | Piston rod     | Structural steel (Hard chrome plating) |                      |
| 10  | Return spring  | Stainless steel                        |                      |
| 11  | Buffer body    | Brass (Electroless nickel plating)     |                      |
| 12  | Buffer adapter | Brass (Electroless nickel plating)     |                      |
| 13  | Nut            | Structural steel (Nickel plating)      |                      |
| 14  | Bushing        | _                                      |                      |
|     | 0              |                                        |                      |

<sup>\*</sup> 2 to 4 are used for both the flat type with groove and the bellows type with groove.

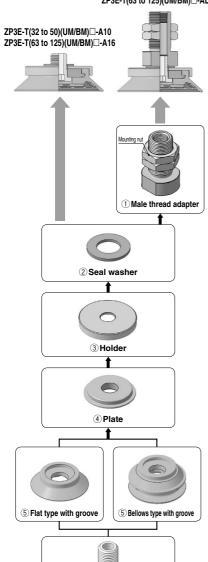
#### ø63 to ø125



**Component Parts** 

| No. | Description    | Material (Surface treatment)                                    | Note                                                            |
|-----|----------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| 1   | Vacuum pad     | NBR, Silicone rubber,<br>Urethane rubber, FKM,<br>Mark-free NBR | Pad form: Flat type<br>with groove, Bellows<br>type with groove |
| 2   | Plate          | Aluminum alloy (Clear anodized)                                 |                                                                 |
| 3   | O-ring         | FKM                                                             |                                                                 |
| 4   | Shaft          | Stainless steel                                                 |                                                                 |
| 5a  | Shaft ring A   | Stainless steel                                                 |                                                                 |
| 5b  | Shaft ring B   | Stainless steel                                                 |                                                                 |
| 6   | Holder         | Aluminum alloy (Clear anodized)                                 |                                                                 |
| 7   | Stopper        | Stainless steel                                                 |                                                                 |
| 8   | Adapter        | Aluminum alloy (Clear anodized)                                 |                                                                 |
| 9   | Piston rod     | Structural steel (Hard chromated)                               |                                                                 |
| 10  | Return spring  | Stainless steel                                                 |                                                                 |
| 11  | Buffer body    | Brass (Electroless nickel plating)                              |                                                                 |
| 12  | Buffer adapter | Brass (Electroless nickel plating)                              |                                                                 |
| 13  | Nut            | Structural steel (Nickel plating)                               |                                                                 |
| 14  | Bushing        |                                                                 |                                                                 |
|     |                |                                                                 |                                                                 |

<sup>\* 2</sup> to 4 are used for both the flat type with groove and the bellows type with groove.




# **Component Part No.**

With Set Screw/With Male Thread Adapter: Vacuum Inlet



ZP3E-T(32 to 50)(UM/BM) □-AL14 ZP3E-T(63 to 125)(UM/BM)□-AL16



6 Set screw

#### 1) Male thread adapter (With 2 mounting nuts)

| Form/Diameter | Fla | at tyr | ne w | ith a | roov | ا1) م | M)  | Rall | OWe | tyne | with | aroc | ν <sub>Ω</sub> (Ι | RM) |
|---------------|-----|--------|------|-------|------|-------|-----|------|-----|------|------|------|-------------------|-----|
|               |     |        |      |       | 80   |       |     |      |     |      |      |      |                   |     |
|               | 32  | 40     | ວບ   | 03    | ου   | 100   | 120 | 32   | 40  | อบ   | 03   | δU   | 100               | 120 |
| ZP3EA-TAL14   | •   | •      | •    | _     | —    | _     | _   | •    | •   | •    | l    | _    | _                 | —   |
| ZP3EA-TAL16   | _   | _      | _    | •     | •    | •     | •   | _    | _   | _    | •    | •    | •                 | •   |

#### 2 Seal washer (Sales unit: 5 pcs.)

| Part no.   | Mounting thread size | Applicable set screw (6) |
|------------|----------------------|--------------------------|
| ZP3EA-SW10 | M10 x 1              | ZP3EA-A10                |
| ZP3EA-SW16 | M16 x 1.5            | ZP3EA-A16                |

#### (3) Holder

| Form/Diameter | Fla        | at typ | oe w | ith g | roov | e ( <b>U</b> | M)  | Bel | ows | type | with | groc | ve (l | BM) |
|---------------|------------|--------|------|-------|------|--------------|-----|-----|-----|------|------|------|-------|-----|
| Part no.      | 32         | 40     | 50   | 63    | 80   | 100          | 125 | 32  | 40  | 50   | 63   | 80   | 100   | 125 |
| ZP3EA-H1A     | •          | •      | _    | _     | _    | _            | _   | •   | •   | _    | _    | _    | _     | _   |
| ZP3EA-H2A     | -          | _      | •    | _     | _    | _            | _   | _   | _   | •    | _    | _    | _     | _   |
| ZP3EA-H3A     | <b> </b> - | -      | _    | •     | •    | _            | _   | _   | _   | _    | •    | _    | _     | _   |
| ZP3EA-H4A     | _          | _      | _    | _     | _    | •            | _   | _   | _   | _    | _    | •    | _     | _   |
| ZP3EA-H5A     | -          | _      | _    | _     | _    | _            | •   | _   | _   | _    | _    | _    | •     | _   |
| ZP3EA-H6A     | _          | _      | _    | _     | _    | _            | _   | _   | _   | _    | _    | _    | _     | •   |

#### (4) Plate

| Form/Diameter | Fla | at ty | oe w       | ith g | roov | e ( <b>U</b> | M)  | Bell | ows | type | with | groo | ve (l | BM)      |
|---------------|-----|-------|------------|-------|------|--------------|-----|------|-----|------|------|------|-------|----------|
| Part no.      | 32  | 40    | 50         | 63    | 80   | 100          | 125 | 32   | 40  | 50   | 63   | 80   | 100   | 125      |
| ZP3EA-P1      | •   | •     | _          | _     | _    | _            | _   | •    | •   | _    | _    | _    | _     | _        |
| ZP3EA-P2      | _   | _     | •          | _     | _    | _            | _   | _    | _   | •    | _    | _    | _     | _        |
| ZP3EA-P3      | _   | _     | <b> </b> — | •     | •    | _            | _   | _    | _   | _    | •    | _    | _     | <u> </u> |
| ZP3EA-P4      | _   | _     | _          | _     | _    | •            | _   | _    | _   | _    | _    | •    | _     | _        |
| ZP3EA-P5      | _   | _     | _          | _     | -    | -            | •   | _    | -   | _    | _    | -    | •     | _        |
| ZP3EA-P6      | _   | _     | _          | _     | _    | _            | _   | _    | _   | _    | _    | _    | _     | •        |

#### (5) Pad

| Form/Diameter |          |    |    |    |    |     |     |    |    |    |    |    |     | BM) |
|---------------|----------|----|----|----|----|-----|-----|----|----|----|----|----|-----|-----|
| Part no.      | 32       | 40 | 50 | 63 | 80 | 100 | 125 | 32 | 40 | 50 | 63 | 80 | 100 | 125 |
| ZP3E-▲UM□     | •        | •  | •  | •  | •  | •   | •   | _  | _  | _  | _  | _  | _   | _   |
| ZP3E-▲BM□     | <b>—</b> | _  | _  | _  |    | _   | _   | •  | •  | •  | •  | •  | •   | •   |

Note 1) ▲ in the table indicates the pad diameter. Note 2)  $\square$  in the table indicates the pad material.

#### 6 Set screw

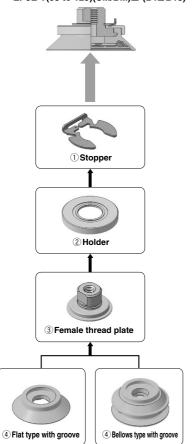
| 0             |    |    |    |    |    |      |     |    |    |    |    |    |        |     |
|---------------|----|----|----|----|----|------|-----|----|----|----|----|----|--------|-----|
| Form/Diameter |    |    |    |    |    | e (U |     |    |    |    |    |    | ove (I |     |
| Part no.      | 32 | 40 | 50 | 63 | 80 | 100  | 125 | 32 | 40 | 50 | 63 | 80 | 100    | 125 |
| ZP3EA-A10     | •  | •  | •  | _  | _  | -    | _   | •  | •  | •  | _  | _  | _      | _   |
| ZP3EA-A16     | _  | _  | _  | •  | •  | •    | •   | _  | _  | _  | •  | •  | •      | •   |

# Mounting nut (Sales unit: 10 pcs.)

| Part no. | Mounting thread size | Applicable male thread adapter (1) |
|----------|----------------------|------------------------------------|
| ZPNA-M14 | M14 x 1              | ZP3EA-TAL14                        |
| ZPNA-M16 | M16 x 1.5            | ZP3EA-TAL16                        |

ZP3 ZP3E

ZP2


ZP2V

ZΡ

# With Female Thread Adapter: Vacuum Inlet



#### ZP3E-T(32 to 50)(UM/BM) -(B8/B10) ZP3E-T(63 to 125)(UM/BM)□-(B12/B18)



#### 1) Stopper

| Form/Diameter |    | at typ |    |    |    |     |     |    |    |    |    |    |     |     |
|---------------|----|--------|----|----|----|-----|-----|----|----|----|----|----|-----|-----|
| Part no.      | 32 | 40     | 50 | 63 | 80 | 100 | 125 | 32 | 40 | 50 | 63 | 80 | 100 | 125 |
| ZP3EA-S1      | •  | •      | •  | _  | -  | _   | _   | •  | •  | •  | _  | _  | -   | _   |
| ZP3EA-S2      | _  | _      | _  | •  | •  | •   | •   | _  | _  | _  | •  | •  | •   | •   |

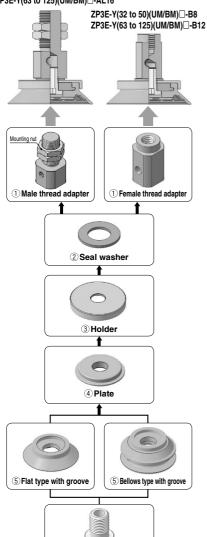
#### 2 Holder

| Form/Diameter |          |    |          |    |    | e ( <b>U</b> |     |    |            |    | with |          |     |          |
|---------------|----------|----|----------|----|----|--------------|-----|----|------------|----|------|----------|-----|----------|
| Part no.      | 32       | 40 | 50       | 63 | 80 | 100          | 125 | 32 | 40         | 50 | 63   | 80       | 100 | 125      |
| ZP3EA-H1B     | •        | •  | _        | _  | -  | _            | _   | •  | •          | _  | _    | _        | _   | <b>—</b> |
| ZP3EA-H2B     | _        | _  | •        | _  | _  | _            | _   | _  | _          | •  | _    | _        | _   | _        |
| ZP3EA-H3B     | <b>—</b> | _  | <b>—</b> | •  | •  | <b>—</b>     | _   | _  | <b> </b> — | _  | •    | <b>—</b> | _   | -        |
| ZP3EA-H4B     | _        | -  | _        | _  | _  | •            | _   | _  | _          | _  | _    | •        | _   | <b>—</b> |
| ZP3EA-H5B     | _        | _  | _        | _  | _  | _            | •   | _  | _          | _  | _    | _        | •   | _        |
| ZP3EA-H6B     | _        | _  | _        | _  | _  | _            | ı   | _  | _          | -  | _    | _        | _   | •        |

#### 3 Female thread plate

|               |                         |     |        |          |       | F    | Pad t        | orm | /diar | nete       | r    |      |          |        |          |
|---------------|-------------------------|-----|--------|----------|-------|------|--------------|-----|-------|------------|------|------|----------|--------|----------|
|               |                         | Fla | at typ | oe w     | ith g | roov | e ( <b>U</b> | M)  | Bell  | ows        | type | with | groo     | ove (I | BM)      |
| Part no.      | Mounting<br>thread size | 32  | 40     | 50       | 63    | 80   | 100          | 125 | 32    | 40         | 50   | 63   | 80       | 100    | 125      |
| ZP3EA-PT1-B8  | M8                      | •   | •      | _        | _     | _    | _            | _   | •     | •          | _    | _    | _        | _      | _        |
| ZP3EA-PT1-B10 | M10                     | •   | •      | <b>—</b> | _     | _    | <b>—</b>     | _   | •     | •          | _    | _    | <b>—</b> | _      | _        |
| ZP3EA-PT2-B8  | M8                      | _   | _      | •        | _     | -    | _            | _   | _     | _          | •    | _    | _        | _      | _        |
| ZP3EA-PT2-B10 | M10                     | _   | _      | •        | _     | _    | _            | _   | _     | <b> </b> — | •    | _    | <b>—</b> | _      | _        |
| ZP3EA-PT3-B12 | M12                     | _   | _      | _        | •     | •    | _            | _   | _     | _          | _    | •    | _        | _      | <b>—</b> |
| ZP3EA-PT3-B18 | M18                     | _   | _      | _        | •     | •    | _            | _   | _     | _          | _    | •    | _        | _      | _        |
| ZP3EA-PT4-B12 | M12                     | _   | _      | _        | _     | _    | •            | _   | _     | <b>—</b>   | _    | _    | •        | _      | _        |
| ZP3EA-PT4-B18 | M18                     | _   | _      | _        | _     | _    | •            | _   | _     | _          | _    | _    | •        | _      | <b>—</b> |
| ZP3EA-PT5-B12 | M12                     | _   | _      | _        | _     | -    | _            | •   | _     | _          | _    | -    | _        | •      | _        |
| ZP3EA-PT5-B18 | M18                     |     | _      | _        | _     | _    | _            | •   | _     | _          | _    | _    | _        | •      | _        |
| ZP3EA-PT6-B12 | M12                     | _   | _      | _        | _     | _    | _            | _   | _     | _          | _    | _    | _        | _      | •        |
| ZP3EA-PT6-B18 | M18                     | _   | _      | _        | _     | _    | _            | _   | _     | _          | _    | _    | _        | _      | •        |

#### (4) Pad


| Form/Diameter |    | Flat type with groove (UM) 32 40 50 63 80 100 125 3 |    |    |    |     |     |    |    |    |    |    |     |     |
|---------------|----|-----------------------------------------------------|----|----|----|-----|-----|----|----|----|----|----|-----|-----|
| Part no.      | 32 | 40                                                  | 50 | 63 | 80 | 100 | 125 | 32 | 40 | 50 | 63 | 80 | 100 | 125 |
| ZP3E-▲UM□     | •  | •                                                   | •  | •  | •  | •   | •   | _  | _  | _  | _  | _  | _   | -   |
| ZP3E-▲BM□     | _  | _                                                   | _  | _  | _  | _   | _   | •  | •  | •  | •  | •  | •   | •   |

Note 1) ▲ in the table indicates the pad diameter. Note 2)  $\Box$  in the table indicates the pad material.

# With Male Thread Adapter/With Female Thread Adapter: Vacuum Inlet



ZP3E-Y(32 to 50)(UM/BM)□-AL14 ZP3E-Y(63 to 125)(UM/BM)□-AL16



6 Set screw

#### 1) Male thread adapter (With 2 mounting nuts)

| Form/Diameter |    |    |    |    | roov |     |     |    |    |    |    |    |     |     |
|---------------|----|----|----|----|------|-----|-----|----|----|----|----|----|-----|-----|
| Part no.      | 32 | 40 | 50 | 63 | 80   | 100 | 125 | 32 | 40 | 50 | 63 | 80 | 100 | 125 |
| ZP3EA-YAL14   | •  | •  | •  | _  | _    | _   | -   | •  | •  | •  | _  | _  | _   | _   |
| ZP3EA-YAL16   | _  | _  | _  | •  | •    | •   | •   | _  | _  | _  | •  | •  | •   | •   |

#### 1) Female thread adapter

| Form/Diameter |    | at typ |    |    |    |     |     | Bellows type with groove (BM) 32 40 50 63 80 100 125 |    |    |    |    |     |     |  |  |
|---------------|----|--------|----|----|----|-----|-----|------------------------------------------------------|----|----|----|----|-----|-----|--|--|
| Part no.      | 32 | 40     | 50 | 63 | 80 | 100 | 125 | 32                                                   | 40 | 50 | 63 | 80 | 100 | 125 |  |  |
| ZP3EA-YB8     | •  | •      | •  | -  | _  | _   | -   | •                                                    | •  | •  | _  | _  | _   | -   |  |  |
| ZP3EA-YB12    | _  | _      | _  | •  |    | •   | •   | _                                                    | _  | _  | •  | •  | •   |     |  |  |

#### 2 Seal washer (Sales unit: 5 pcs.)

| Part no.   | Mounting thread size | Applicable set screw (6) |
|------------|----------------------|--------------------------|
| ZP3EA-SW10 | M10 x 1              | ZP3EA-A10                |
| ZP3EA-SW16 | M16 x 1.5            | ZP3EA-A16                |

#### (3) Holder

| Form/Diameter | Fla        | at typ | oe w | ith g | roov | e ( <b>U</b> | M)  | Bell | lows | type | with | groc | ove (I                                             | BM) |
|---------------|------------|--------|------|-------|------|--------------|-----|------|------|------|------|------|----------------------------------------------------|-----|
| Part no.      | 32         | 40     | 50   | 63    | 80   | 100          | 125 | 32   | 40   | 50   | 63   | 80   | 100                                                | 125 |
| ZP3EA-H1A     | •          | •      | _    | _     | _    | _            | _   | •    | •    | _    | _    | _    | _                                                  | -   |
| ZP3EA-H2A     | _          | _      | •    | _     | _    | _            | _   | _    | _    | •    | _    | _    | <del>  -                                    </del> | -   |
| ZP3EA-H3A     | <b> </b> — | _      | -    | •     | •    | _            | _   | _    | _    | _    | •    | _    | _                                                  | -   |
| ZP3EA-H4A     | _          | _      | _    | _     | _    | •            | _   | _    | _    | _    | _    | •    | _                                                  | _   |
| ZP3EA-H5A     | _          | _      | _    | _     | _    | _            | •   | _    | _    | _    | _    | _    | •                                                  | -   |
| ZP3EA-H6A     | _          | _      | _    | _     | _    | _            | _   | _    | _    | _    | _    | _    | _                                                  |     |

#### 4) Plate

| 22 |                            |                     |     |    | e (U | IVI) | Dell | ows | туре | with | groc | ove (I | SM) |
|----|----------------------------|---------------------|-----|----|------|------|------|-----|------|------|------|--------|-----|
| 32 | 40                         | 50                  | 63  | 80 | 100  | 125  | 32   | 40  | 50   | 63   | 80   | 100    | 125 |
| •  | •                          | -                   | _   | _  | _    | _    | •    | •   | _    | _    | _    | _      | _   |
| _  | _                          | •                   | _   | _  | _    | _    | _    | _   | •    | _    | _    | _      | _   |
| _  | _                          | _                   | •   | •  | _    | _    | _    | _   | _    | •    | _    | _      | _   |
| _  | _                          | _                   | _   | _  | •    | _    | _    | _   | _    | -    | •    | _      | _   |
| -  | _                          | _                   | -   | _  | _    | •    | _    | _   | -    | _    | _    | •      | _   |
| _  | _                          | _                   | _   | _  | _    | _    | _    | _   | _    | _    | _    | _      | •   |
|    | •<br>-<br>-<br>-<br>-<br>- | • •<br><br><br><br> | • • |    |      |      |      |     |      |      |      |        |     |

#### (5) Pad

| O             |    |        |    |    |    |     |     |    |    |    |    |    |     |     |
|---------------|----|--------|----|----|----|-----|-----|----|----|----|----|----|-----|-----|
| Form/Diameter |    | at typ |    |    |    |     |     |    |    |    |    |    |     | BM) |
| Part no.      | 32 | 40     | 50 | 63 | 80 | 100 | 125 | 32 | 40 | 50 | 63 | 80 | 100 | 125 |
| ZP3E-▲UM□     | •  | •      | •  | •  | •  | •   | •   | _  | _  | _  | _  | _  | _   | [-] |
| ZP3E-▲BM□     | _  | _      | _  | _  | -  | _   | _   | •  | •  | •  | •  | •  | •   | •   |

Note 1)  $\blacktriangle$  in the table indicates the pad diameter.

Note 2)  $\square$  in the table indicates the pad material.

#### 6 Set screw

| Form/Diameter | Fla | at typ | oe w | ith g | roov | e (U | M)  | Bell | lows | type | with | groc | ve (l | BM) |
|---------------|-----|--------|------|-------|------|------|-----|------|------|------|------|------|-------|-----|
| Part no.      | 32  | 40     | 50   | 63    | 80   | 100  | 125 | 32   | 40   | 50   | 63   | 80   | 100   | 125 |
| ZP3EA-A10     | •   | •      | •    | _     | _    | _    | _   | •    | •    | •    | _    | _    | _     | _   |
| ZP3EA-A16     | _   | _      | _    | •     | •    | •    | •   | _    | _    | _    | •    | •    | •     | •   |

Refer to page 471 for the products that contain ② to ⑥.

#### Mounting nut (Sales unit: 10 pcs.)

|          | outes units to p     | .,                                 |
|----------|----------------------|------------------------------------|
| Part no. | Mounting thread size | Applicable male thread adapter (1) |
| ZPNA-M14 | M14 x 1              | ZP3EA-YAL14                        |
| ZPNA-M16 | M16 x 1.5            | ZP3EA-YAL16                        |

**SMC** 

ZP3

ZP3E ZP2

ZP2V

ZΡ

# With Buffer: Vacuum Inlet Vertical



Vacuum inlet: Vertical Vacuum inlet: Lateral (10/30/50) (10/30/50)Mounting nut 1 Buffer assembly 1 Buffer assembly (Lateral) (Vertical) 2 Seal washer 3 Holder 4 Plate (5) Bellows type with groove 5 Flat type with groove

6 Set screw

#### 1) Buffer assembly (With 2 mounting nuts)

| Form/Diameter    | Fla | at typ | oe w | ith g | roov | e (U | M)  | Bell | ows | type | with | groo | ove (I   | BM) |
|------------------|-----|--------|------|-------|------|------|-----|------|-----|------|------|------|----------|-----|
| Part no.         | 32  | 40     | 50   | 63    | 80   | 100  | 125 | 32   | 40  | 50   | 63   | 80   | 100      | 125 |
| ZP3EB-(T/Y)1JB10 | •   | •      | •    | _     | _    | _    | _   | •    | •   | •    | _    | _    | _        | _   |
| ZP3EB (T/Y)1JB30 | •   | •      | •    | -     | _    | _    | -   | •    | •   | •    | _    | -    | _        | _   |
| ZP3EB-(T/Y)1JB50 | •   | •      | •    | _     | _    | _    | _   | •    | •   | •    | _    | _    | <b>—</b> | _   |
| ZP3EB-(T/Y)2JB10 | _   | _      | _    | •     | •    | •    | •   | _    | _   | _    | •    | •    | •        | •   |
| ZP3EB-(T/Y)2JB30 | _   | _      | _    | •     | •    | •    | •   | _    | _   | _    | •    | •    | •        | •   |
| ZP3EB-(T/Y)2JB50 | _   | _      | _    | •     | •    | •    | •   | _    | _   | _    | •    | •    | •        | •   |

\* Select "T" when selecting a T type buffer assembly. Example) ZP3EB-T1JB10

#### 2 Seal washer (Sales unit: 5 pcs.)

| Part no.   | Mounting thread size | Applicable set screw (6) |
|------------|----------------------|--------------------------|
| ZP3EA-SW10 | M10 x 1              | ZP3EA-A10                |
| ZP3EA-SW16 | M16 x 1.5            | ZP3EA-A16                |

#### (3) Holder

| Form/Diameter | Fla | at typ | oe w | ith g | roov | e (U | M)  | Bell | lows | type | with | groc | ve (I | 3M) |
|---------------|-----|--------|------|-------|------|------|-----|------|------|------|------|------|-------|-----|
| Part no.      | 32  | 40     | 50   | 63    | 80   | 100  | 125 | 32   | 40   | 50   | 63   | 80   | 100   | 125 |
| ZP3EA-H1A     | •   | •      | _    | _     | _    | _    | _   | •    | •    | _    | _    | _    | _     | -   |
| ZP3EA-H2A     | _   | _      | •    | _     | _    | _    | _   | _    | _    | •    | _    | _    | _     | -   |
| ZP3EA-H3A     | _   | _      | _    | •     | •    | _    | _   | _    | _    | _    | •    | _    | _     | -   |
| ZP3EA-H4A     | _   | _      | _    | _     | _    | •    | _   | _    | _    | _    | _    | •    | _     | _   |
| ZP3EA-H5A     | _   | _      | _    | _     | _    | _    | •   | _    | _    | _    | _    | _    | •     | -   |
| ZP3EA-H6A     | _   | _      | _    | _     | _    | _    | _   | _    | _    | _    | _    | _    | _     |     |

#### 4) Plate

| Form/Diameter | Fla            | at typ | oe w | ith g | roov | e (U | M)  | Bell | lows | type           | with | groo | ove (I       | BM) |
|---------------|----------------|--------|------|-------|------|------|-----|------|------|----------------|------|------|--------------|-----|
| Part no.      | 32             | 40     | 50   | 63    | 80   | 100  | 125 | 32   | 40   | 50             | 63   | 80   | 100          | 125 |
| ZP3EA-P1      | •              | •      | _    | _     | _    | _    | _   | •    | •    | _              | _    | _    | _            | _   |
| ZP3EA-P2      | <b> </b> —     | _      | •    | _     | _    | _    | _   | _    | _    | •              | -    | _    | <b>—</b>     | _   |
| ZP3EA-P3      | _              | _      | _    | •     | •    | _    | _   | _    | _    | _              | •    | _    | _            | _   |
| ZP3EA-P4      | <del>  -</del> | _      | _    | _     | _    | •    | _   | _    | _    | <del>  -</del> | _    | •    | <del>-</del> | _   |
| ZP3EA-P5      | _              | _      | _    | _     | _    | _    | •   | _    | _    | _              | _    | _    | •            | _   |
| ZP3EA-P6      | _              | _      | _    | _     | _    | _    | _   | _    | _    | _              | _    | _    | _            | •   |

#### (5) Pad

| Form/Diameter | Fla | at typ | oe w | ith g | roov | e (U | M)  | Bell | lows | type | with | groc | ve (l | BM) |
|---------------|-----|--------|------|-------|------|------|-----|------|------|------|------|------|-------|-----|
| Part no.      | 32  | 40     | 50   | 63    | 80   | 100  | 125 | 32   | 40   | 50   | 63   | 80   | 100   | 125 |
| ZP3E-▲UM□     | •   | •      | •    | •     | •    | •    | •   | _    | _    | _    | -    | _    | _     | _   |
| ZP3E-▲BM□     | _   | _      | _    | _     | _    | _    | _   | •    | •    | •    | •    | •    | •     | •   |

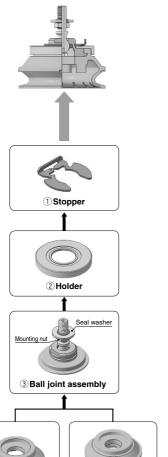
Note 1)  $\blacktriangle$  in the table indicates the pad diameter. Note 2) 
in the table indicates the pad material.

## 6 Set screw

| Form/Diameter Part no. | Applicable buffer assembly (1) |
|------------------------|--------------------------------|
| ZP3EA-A10              | ZP3EB-(T/Y)1JB (10/30/50)      |
| ZP3EA-A16              | ZP3EB-(T/Y)2JB (10/30/50)      |

Refer to page 471 for the products that contain ② to ⑥.

#### Mounting nut (Sales unit: 10 pcs.)


| Part no. | Mounting thread size | Applicable buffer assembly (1) |
|----------|----------------------|--------------------------------|
| ZPNA-M18 | M18 x 1.5            | ZP3EB-(T/Y)1JB (10/30/50)      |
| ZPNA-M22 | M22 x 1.5            | ZP3EB-(T/Y)2JB (10/30/50)      |



# With Ball Joint Adapter (for Direct Mounting): Vacuum Inlet



#### ZP3E-TF(32 to 125)(UM/BM) □-(AL6/AL12)



4 Bellows type with groove

4 Flat type with groove

#### 1) Stopper

| - 11          |    |    |    |    |    |     |     |    |    |    |    |    |        |     |
|---------------|----|----|----|----|----|-----|-----|----|----|----|----|----|--------|-----|
| Form/Diameter |    |    |    |    |    |     |     |    |    |    |    |    | ove (I |     |
| Part no.      | 32 | 40 | 50 | 63 | 80 | 100 | 125 | 32 | 40 | 50 | 63 | 80 | 100    | 125 |
| ZP3EA-S1      | •  | •  | •  | -  | _  | _   | -   | •  | •  | •  | _  | _  | _      | _   |
| ZP3EA-S2      | -  | _  | _  | •  | •  | •   | •   | _  | _  | _  | •  | •  | •      | •   |

#### 2 Holder

| Form/Diameter |    |    | oe w |    |    |     |     |    |    |    | with |    |     |     |
|---------------|----|----|------|----|----|-----|-----|----|----|----|------|----|-----|-----|
| Part no.      | 32 | 40 | 50   | 63 | 80 | 100 | 125 | 32 | 40 | 50 | 63   | 80 | 100 | 125 |
| ZP3EA-H1B     | •  | •  | -    | _  | _  | _   | _   | •  | •  | _  | -    | _  | _   | _   |
| ZP3EA-H2B     | _  | _  | •    | _  | _  | _   | _   | _  | _  | •  | _    | _  | _   | _   |
| ZP3EA-H3B     | _  | _  | _    | •  | •  | _   | _   | _  | _  | _  | •    | _  | _   | _   |
| ZP3EA-H4B     | _  | _  | _    | _  | _  | •   | _   | _  | _  | _  | _    | •  | _   | _   |
| ZP3EA-H5B     | _  | _  | _    | _  | _  | _   | •   | _  | _  | _  | _    | _  | •   | _   |
| ZP3EA-H6B     | _  | _  | _    | _  | _  | _   | _   | _  | _  | _  | _    | _  | _   | •   |

#### 3 Ball joint assembly (Seal washer and mounting nut: 1 pc. each)

| Form/Diameter |                |    | oe w |    |    |     |     |    |    |    | with |    |     |     |
|---------------|----------------|----|------|----|----|-----|-----|----|----|----|------|----|-----|-----|
| Part no.      | 32             | 40 | 50   | 63 | 80 | 100 | 125 | 32 | 40 | 50 | 63   | 80 | 100 | 125 |
| ZP3EA-F1-AL6  | •              | •  | _    | _  | _  | _   | _   | •  | •  | _  | _    | _  | _   | _   |
| ZP3EA-F2-AL6  | -              | _  | •    | _  | _  | _   | _   | _  | _  | •  | -    | _  | _   | -   |
| ZP3EA-F3-AL12 | _              | _  | _    | •  | •  | _   | _   | _  | _  | _  | •    | _  | _   | _   |
| ZP3EA-F4-AL12 | <del>  -</del> | _  | _    | _  | _  | •   | _   | _  | _  | _  | _    | •  | _   | _   |
| ZP3EA-F5-AL12 | -              | _  | -    | _  | _  | -   | •   | _  | _  | _  | -    | _  | •   | -   |
| ZP3EA-F6-AL12 | _              | _  | _    | _  | _  | _   | _   | _  | _  | _  | _    | _  | _   | •   |

#### 4 Pad

| Form/Diameter | Fla | at typ | oe w | ith g | roov | e ( <b>U</b> | M)  | Bell | ows | type | with | groc | ve (l | BM) |
|---------------|-----|--------|------|-------|------|--------------|-----|------|-----|------|------|------|-------|-----|
| Part no.      | 32  | 40     | 50   | 63    | 80   | 100          | 125 | 32   | 40  | 50   | 63   | 80   | 100   | 125 |
| ZP3E-▲UM□     | •   | •      | •    | •     | •    | •            | •   | _    | _   | _    | _    | _    | _     | _   |
| ZP3E-▲BM□     | _   | _      | _    | _     | _    | _            | _   | •    | •   | •    | •    | •    | •     | •   |

Note 1) ▲ in the table indicates the pad diameter.

Note 2) 
in the table indicates the pad material.

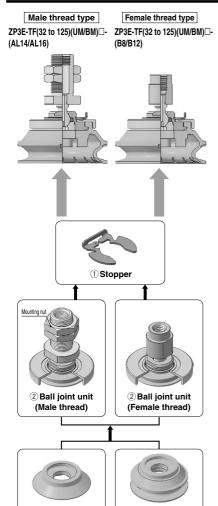
#### Seal washer (Sales unit: 5 pcs.)

| •          | •                    | ,                                  |
|------------|----------------------|------------------------------------|
| Part no.   | Mounting thread size | Applicable ball joint assembly (3) |
| ZP3EA-SW6  | M6 x 1               | ZP3EA-F(1/2)-AL6                   |
| ZP3EA-SW12 | M12 x 1.25           | ZP3EA-F(3/4/5/6)-AL12              |

#### Mounting nut (Sales unit: 10 pcs.)

| • •      |                      | ,                                  |
|----------|----------------------|------------------------------------|
| Part no. | Mounting thread size | Applicable ball joint assembly (3) |
| ZPNA-M6  | M6 x 1               | ZP3EA-F(1/2)-AL6                   |
| ZPNA-M12 | M12 x 1.25           | ZP3EA-F(3/4/5/6)-AL12              |

ZP3


ZP3E ZP2

ZP2V

ZΡ

# With Ball Joint Female Thread Adapter: Vacuum Inlet





#### 1) Stopper

| Form/Diameter |    |    |    |    |    | e ( <b>U</b> |     |    |    |    |    |    |     |     |
|---------------|----|----|----|----|----|--------------|-----|----|----|----|----|----|-----|-----|
| Part no.      | 32 | 40 | 50 | 63 | 80 | 100          | 125 | 32 | 40 | 50 | 63 | 80 | 100 | 125 |
| ZP3EA-S1      | •  | •  | •  | -  | _  | _            | -   | •  | •  | •  | _  | _  | -   | _   |
| ZP3EA-S2      | _  | _  | _  | •  | •  | •            | •   | _  | _  | _  | •  | •  | •   | •   |

#### 2 Ball joint unit (Male thread) (With 2 mounting nuts)

| Form/Diameter  |    |    | oe w |    |    |     |     |    |    |    | with |    |     |     |
|----------------|----|----|------|----|----|-----|-----|----|----|----|------|----|-----|-----|
| Part no.       | 32 | 40 | 50   | 63 | 80 | 100 | 125 | 32 | 40 | 50 | 63   | 80 | 100 | 125 |
| ZP3EU-F1-TAL14 | •  | •  | _    | _  | _  | _   | _   | •  | •  | _  | _    | _  | _   | _   |
| ZP3EU-F2-TAL14 | _  | _  | •    | _  | _  | _   | _   | _  | _  | •  | _    | _  | _   | _   |
| ZP3EU-F3-TAL16 | _  | _  | _    | •  | •  | _   | _   | _  | _  | _  | •    | _  | _   | _   |
| ZP3EU-F4-TAL16 | _  | _  | _    | _  | _  | •   | _   | _  | _  | _  | _    | •  | _   | _   |
| ZP3EU-F5-TAL16 | _  | _  | _    | _  | _  | _   | •   | _  | _  | _  | _    | _  | •   | _   |
| ZP3EU-F6-TAL16 | _  | -  | _    | _  | -  | _   | _   | ı  | _  | _  | _    | ı  | _   | •   |

#### 2 Ball joint unit (Female thread)

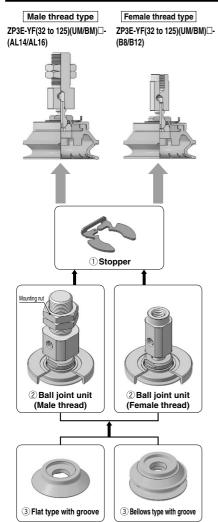
| Form/Diameter |            | at typ |    |    |    |     |     |    |    |    | with |    |     |     |
|---------------|------------|--------|----|----|----|-----|-----|----|----|----|------|----|-----|-----|
| Part no.      | 32         | 40     | 50 | 63 | 80 | 100 | 125 | 32 | 40 | 50 | 63   | 80 | 100 | 125 |
| ZP3EU-F1-TB8  | •          | •      | _  | _  | _  | _   | _   | •  | •  | _  | _    | _  | _   | -   |
| ZP3EU-F2-TB8  | <b> </b> — | _      | •  | _  | _  | _   | _   | _  | _  | •  | _    | _  | _   | _   |
| ZP3EU-F3-TB12 | _          | _      | _  | •  | •  | _   | _   | _  | _  | _  | •    | _  | _   | -   |
| ZP3EU-F4-TB12 | _          | _      | _  | _  | _  | •   | _   | _  | _  | _  | _    | •  | _   | -   |
| ZP3EU-F5-TB12 | _          | _      | -  | _  | _  | _   | •   | _  | _  | _  | -    | _  | •   | -   |
| ZP3EU-F6-TB12 | <u> </u>   | _      | _  | _  | _  | _   | _   | _  | _  | _  | _    | _  |     | •   |

#### 3 Pad

| Form/Diameter | Fla          | at typ | oe w | ith g          | roov | e (U     | M)  | Bell | lows | type | with | groc | ve (I | BM) |
|---------------|--------------|--------|------|----------------|------|----------|-----|------|------|------|------|------|-------|-----|
| Part no.      | 32           | 40     | 50   | 63             | 80   | 100      | 125 | 32   | 40   | 50   | 63   | 80   | 100   | 125 |
| ZP3E-▲UM□     | •            | •      | •    | •              | •    | •        | •   | _    | _    | _    | _    | _    | _     | _   |
| ZP3E-▲BM□     | <del>-</del> | _      | _    | <del>  -</del> | _    | <b>—</b> | _   | •    | •    | •    | •    | •    | •     | •   |

Note 1) ▲ in the table indicates the pad diameter. Note 2) 
in the table indicates the pad material.

#### Mounting nut (Sales unit: 10 pcs.)


| Part no. | Mounting thread size | Applicable ball joint unit (Male thread) (2) |
|----------|----------------------|----------------------------------------------|
| ZPNA-M14 | M14 x 1              | ZP3EU-F(1/2)-TAL14                           |
| ZPNA-M16 | M16 x 1.5            | ZP3EU-F(3/4/5/6)-TAL16                       |

3 Flat type with groove

3 Bellows type with groove

# With Ball Joint Male Thread Adapter/Female Thread Adapter: Vacuum Inlet





#### 1) Stopper

| <u> </u>     |    |                                                         |    |            |    |          |            |    |    |    |    |            |     |     |
|--------------|----|---------------------------------------------------------|----|------------|----|----------|------------|----|----|----|----|------------|-----|-----|
| Form/Diamete |    | Flat type with groove (UM) Bellows type with groove (BN |    |            |    |          |            |    |    |    |    |            |     |     |
| Part no.     | 32 | 40                                                      | 50 | 63         | 80 | 100      | 125        | 32 | 40 | 50 | 63 | 80         | 100 | 125 |
| ZP3EA-S1     | •  | •                                                       | •  | <b> </b> — | _  | <b>—</b> | <b> </b> — | •  | •  | •  | _  | <b> </b> — | _   | _   |
| ZP3EA-S2     | -  | _                                                       | _  | •          | •  | •        | •          | _  | _  | _  | •  | •          | •   | •   |

#### 2 Ball joint unit (Male thread) (With 2 mounting nuts)

| Form/Diameter  |    |    | oe w |    |    |     |     |    |    |    | with |    |     |     |
|----------------|----|----|------|----|----|-----|-----|----|----|----|------|----|-----|-----|
| Part no.       | 32 | 40 | 50   | 63 | 80 | 100 | 125 | 32 | 40 | 50 | 63   | 80 | 100 | 125 |
| ZP3EU-F1-YAL14 | •  | •  | _    | _  | _  | _   | _   | •  | •  | _  | _    | _  | _   | _   |
| ZP3EU-F2-YAL14 | _  | _  | •    | _  | _  | _   | _   | _  | _  | •  | _    | _  | _   | _   |
| ZP3EU-F3-YAL16 | _  | _  | _    | •  | •  | _   | _   | _  | _  | _  | •    | _  | _   | _   |
| ZP3EU-F4-YAL16 | _  | _  | _    | _  | _  | •   | _   | _  | _  | _  | _    | •  | _   | _   |
| ZP3EU-F5-YAL16 | _  | _  | _    | _  | _  | _   | •   | _  | _  | _  | _    | _  | •   | _   |
| ZP3EU-F6-YAL16 | _  | _  | _    | _  | _  | _   | _   | _  | _  | _  | _    | _  | _   | •   |

#### 2 Ball joint unit (Female thread)

| Form/Diameter |          |    | pe w     |            |    |     |     |    |    |    | with |    |     |     |
|---------------|----------|----|----------|------------|----|-----|-----|----|----|----|------|----|-----|-----|
| Part no.      | 32       | 40 | 50       | 63         | 80 | 100 | 125 | 32 | 40 | 50 | 63   | 80 | 100 | 125 |
| ZP3EU-F1-YB8  | •        | •  | <b>—</b> | _          | _  | _   | _   | •  | •  | _  | _    | _  | _   | _   |
| ZP3EU-F2-YB8  | -        | _  | •        | <b> </b> — | _  | _   | _   | _  | _  | •  | _    | _  | _   | -   |
| ZP3EU-F3-YB12 | <u> </u> | _  | _        | •          | •  | _   | _   | _  | _  | _  | •    | _  | _   | _   |
| ZP3EU-F4-YB12 | Ι-       | _  | <b>—</b> | _          | _  | •   | _   | _  | _  | _  | _    | •  | _   | _   |
| ZP3EU-F5-YB12 | -        | _  | _        | _          | _  | -   | •   | -  | -  | _  |      | _  | •   |     |
| ZP3EU-F6-YB12 | -        | _  | <b>—</b> | _          | _  | _   | _   | _  | _  | _  | _    | _  | _   | •   |

#### ③ Pad

| Form/Diameter | Fla          | at typ | oe w | ith g | roov | e (U | M)  | Bell | lows | type | with | groc | ve (l | BM) |
|---------------|--------------|--------|------|-------|------|------|-----|------|------|------|------|------|-------|-----|
| Part no.      | 32           | 40     | 50   | 63    | 80   | 100  | 125 | 32   | 40   | 50   | 63   | 80   | 100   | 125 |
| ZP3E-▲UM□     | •            | •      | •    | •     | •    | •    | •   | _    | _    | _    | _    | _    | _     | _   |
| ZP3E-▲BM□     | <del>-</del> | _      | _    | _     | _    | _    | _   | •    | •    | •    | •    | •    | •     | •   |

Note 1) ▲ in the table indicates the pad diameter.

Note 2) 
in the table indicates the pad material.

#### Mounting nut (Sales unit: 10 pcs.)

| Part no. | Mounting thread size | Applicable ball joint unit (Male thread) (2) |
|----------|----------------------|----------------------------------------------|
| ZPNA-M14 | M14 x 1              | ZP3EU-F(1/2)-YAL14                           |
| ZPNA-M16 | M16 x 1.5            | ZP3EU-F(3/4/5/6)-YAL14                       |

ZP3

ZP3E

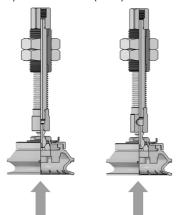
ZP2 ZP2V

ZΡ

XT661

**SMC** 

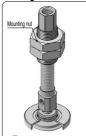
# With Ball Joint Buffer: Vacuum Inlet



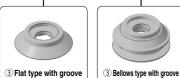



Vacuum inlet: Lateral Type Y

ZP3E-TF(32 to 125)(UM/BM)□JB (10/30/50)


ZP3E-YF(32 to 125)(UM/BM)□JB (10/30/50)








unit: Vertical



2 Ball joint buffer unit: Lateral



#### 1) Stopper

| O             |    |    |    |    |    |          |              |    |    |    |    |      |     |     |
|---------------|----|----|----|----|----|----------|--------------|----|----|----|----|------|-----|-----|
| Form/Diameter |    |    |    |    |    |          |              |    |    |    |    | groc |     |     |
| Part no.      | 32 | 40 | 50 | 63 | 80 | 100      | 125          | 32 | 40 | 50 | 63 | 80   | 100 | 125 |
| ZP3EA-S1      | •  | •  | •  | -  | _  | <b>—</b> | <del>-</del> | •  | •  | •  | _  | _    | _   | _   |
| ZP3EA-S2      | _  | _  | _  | •  |    | •        |              | _  | _  |    | •  | •    | •   | •   |

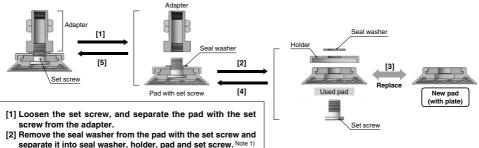
#### 2 Ball joint buffer unit (With 2 mounting nuts)

| re (BM)<br>100 125 |
|--------------------|
| Ì                  |
| 100 125            |
| _ -                |
| _ -                |
|                    |
|                    |
|                    |
| -1-                |
|                    |
|                    |
| -   -              |
|                    |
|                    |
| - -                |
|                    |
|                    |
| $\bullet \mid -$   |
|                    |
|                    |
| -   •              |
|                    |
|                    |

<sup>\*</sup> Select "T" when selecting a T type buffer unit. Example) ZP3EU-TF1JB10

#### ③ Pad

| Form/Diameter |    |    |    |    |    | e (U |     |    |    |    |    |    |     |     |
|---------------|----|----|----|----|----|------|-----|----|----|----|----|----|-----|-----|
| Part no.      | 32 | 40 | 50 | 63 | 80 | 100  | 125 | 32 | 40 | 50 | 63 | 80 | 100 | 125 |
| ZP3E-▲UM□     | •  | •  | •  | •  | •  | •    | •   | _  | _  | _  | _  | -  | -   | _   |
| ZP3E-▲BM□     | _  | _  | _  | _  | _  | _    | _   | •  | •  | •  | •  | •  | •   | •   |


Note 1) ▲ in the table indicates the pad diameter. Note 2) ☐ in the table indicates the pad material.

#### Mounting nut (Sales unit: 10 pcs.)

| Part no. | Mounting thread size | Applicable ball joint buffer unit (2) |
|----------|----------------------|---------------------------------------|
| ZPNA-M18 | M18 x 1.5            | ZP3EU-(T/Y)F(1/2)JB(10/30/50)         |
| ZPNA-M22 | M22 x 1.5            | ZP3EU-(T/Y)F(3/4/5/6)JB(10/30/50)     |

# How to Replace the Pad

#### With Set Screw



- [3] Replace the pad (with plate) with a new one.
- [4] Insert the set screw from the suction surface side of the new pad, and mount the holder and seal washer in order.
- [5] Mount the adapter onto the set screw. Note 2)
  - Note 1) When mounting and removing the seal washer, rotate the set screw while the seal washer is being held.

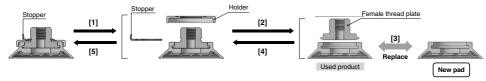
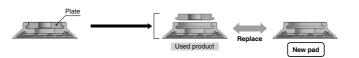

Note 2) Refer to the tightening torque shown in Table 1 for adapter mounting.

Table 1: Recommended Set Screw Tightening Torque

|                 | Tightening                                   |                      |                 |
|-----------------|----------------------------------------------|----------------------|-----------------|
| Pad<br>diameter | Product part no.                             | Mounting thread size | torque<br>[N·m] |
|                 | ZP3E-(32 to 50)UM□□<br>ZP3E-(32 to 50)BM□□   | M10 x 1              | 8 to 10         |
| ø63 to<br>ø125  | ZP3E-(63 to 125)UM□□<br>ZP3E-(63 to 125)BM□□ | M16 x 1.5            | 13 to 15        |

\* Refer to "Pad Unit with Plate" shown below for the replacement method for pads with plate.

#### With Stopper (with Female Thread Plate/with Ball Joint Unit)




- [1] Pull out the stopper horizontally and remove the holder from the product.
- [2] Remove the female plate.
- [3] Replace the pad with a new one.
- [4] Insert the female thread plate into the new pad.
- [5] Mount the holder and insert the stopper into the specified position.



\* Refer to "Pad Unit with Plate" shown below for the replacement method for pads with plate.

#### Pad Unit (with Plate)



Remove the plate and replace the pad with a new one. Reassemble the product.

\* Press the outer circumference of the plate insertion area by hand to eliminate distortion.





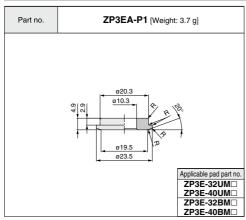
<sup>\*</sup> The same replacement method is applicable to the replacement of the pad unit with a female thread plate or ball joint unit.

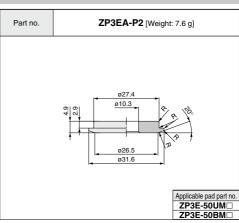


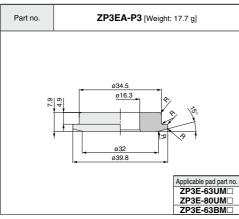
479

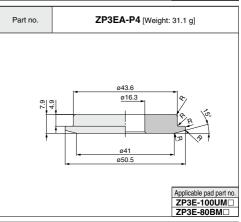
ZP3

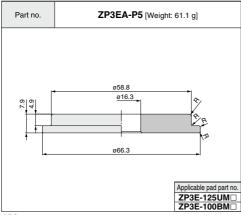
ZP3E

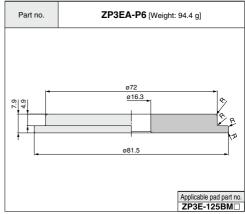

ZP2


ZP2V

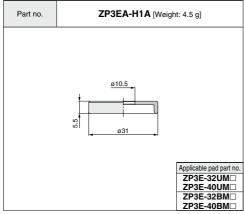

ZΡ

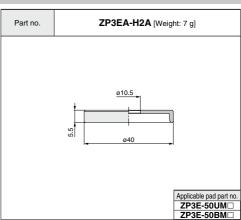

# **Component Parts: Dimensions**

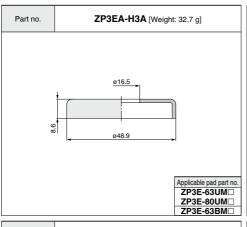

## Plate

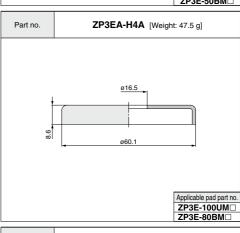


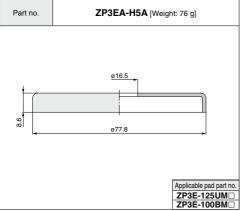


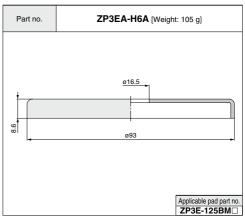





#### Holder



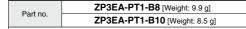


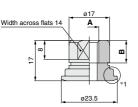










ZP3


ZP3E

ZP2 ZP2V

ZPT ZPR

#### **Female Thread Plate**





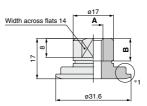
#### Dimensions

| Part no.      | Α         | В   |
|---------------|-----------|-----|
| ZP3EA-PT1-B8  | M8 x 1.25 | 9.5 |
| ZP3EA-PT1-B10 | M10 x 1.5 | 13  |

Applicable pad part no.

ZP3E-32UM□

ZP3E-40UM□


ZP3E-32BM□

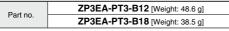
ZP3E-40BM□

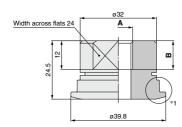
Part no. 

ZP3EA-PT2-B8 [Weight: 14 g]

ZP3EA-PT2-B10 [Weight: 12.6 g]




#### Dimensions


| Dilliciations |           |     |
|---------------|-----------|-----|
| Part no.      | Α         | В   |
| ZP3EA-PT2-B8  | M8 x 1.25 | 9.5 |
| ZP3EA-PT2-B10 | M10 x 1.5 | 13  |

Applicable pad part no.

ZP3E-50UM□

ZP3E-50BM□





#### Dimensions

| Part no.      | Α          | В  |  |
|---------------|------------|----|--|
| ZP3EA-PT3-B12 | M12 x 1.75 | 12 |  |
| ZP3EA-PT3-B18 | M18 x 1.5  | 18 |  |

Applicable pad part no.

ZP3E-63UM□

ZP3E-80UM□

ZP3E-63BM□

| Part no.     | ZP3EA-P14-D12 (Weight: 62 g)        |
|--------------|-------------------------------------|
| ranino.      | <b>ZP3EA-PT4-B18</b> [Weight: 52 g] |
| Width across |                                     |

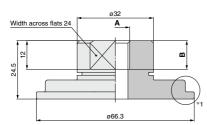
**ZP3EA-PT4-B12** [Weight: 62 g]

ZP3EA-PT6-B12 [Weight: 126 g]

#### **Dimensions**

| Part no.      | Α          | В  |  |
|---------------|------------|----|--|
| ZP3EA-PT4-B12 | M12 x 1.75 | 12 |  |
| ZP3EA-PT4-B18 | M18 x 1.5  | 18 |  |

**ZP3EA-PT6-B18** M18 x 1.5 18


Applicable pad part no.

ZP3E-100UM□

ZP3E-80BM□

ZP3E-125BM□

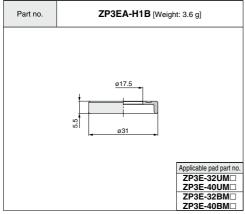
| Part no. | <b>ZP3EA-PT5-B12</b> [Weight: 92.4 g] |
|----------|---------------------------------------|
|          | <b>ZP3EA-PT5-B18</b> [Weight: 82.4 g] |
|          |                                       |

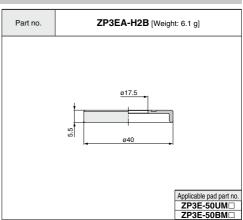


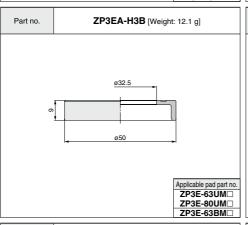
#### Dimensions

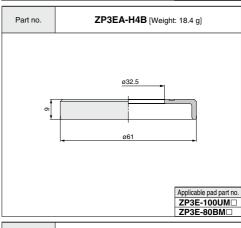
| Part no.      | Α          | В  |  |
|---------------|------------|----|--|
| ZP3EA-PT5-B12 | M12 x 1.75 | 12 |  |
| ZP3EA-PT5-B18 | M18 x 1.5  | 18 |  |

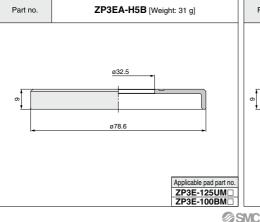
Applicable pad part no.

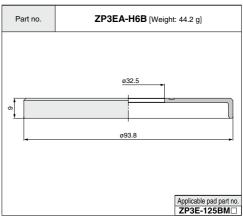

ZP3E-125UM□


ZP3E-100BM□


| Part no.     |             |                 |                              |      |  |  |
|--------------|-------------|-----------------|------------------------------|------|--|--|
| Part no.     | ZP3E        | A-PT6           | <b>6-B18</b> [Weight: 116 g] |      |  |  |
| Width across | s flats 24  | ø32<br><b>A</b> |                              | 1    |  |  |
| ø81.5        |             |                 |                              |      |  |  |
| Dimensions   | •           |                 | _                            |      |  |  |
| Part no.     | Α           | В               |                              |      |  |  |
| ZP3EA-PT6-B  | M12 x 1.75  | 12              | Applicable pad part          | no   |  |  |
| ZDOE A DTC D | 110 140 4 5 | 40              | ripplioable pad part         | 110. |  |  |


<sup>\*1</sup> Refer to page 480 for detailed dimensions.


#### Holder (for Female thread plate/Ball joint)



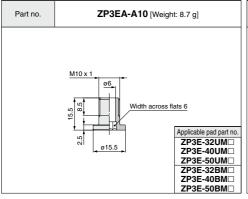


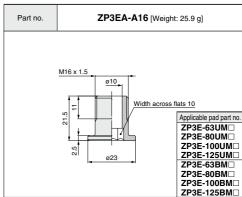




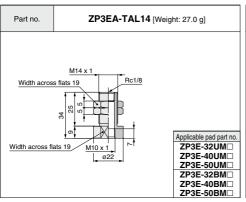


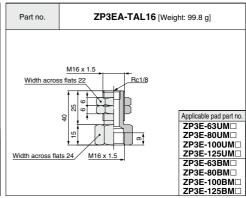




ZP3

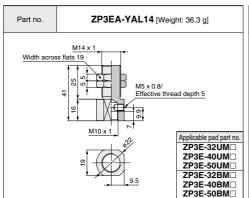

ZP3E

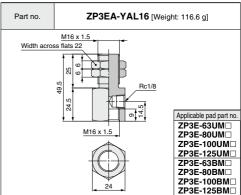
ZP2


ZP2V ZP ZPT ZPR

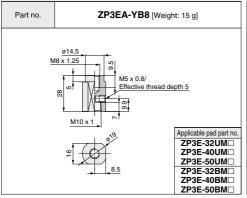

#### **Set Screw**

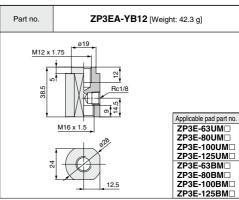




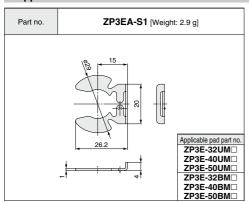


#### Male Thread Adapter (Vacuum inlet: Vertical)

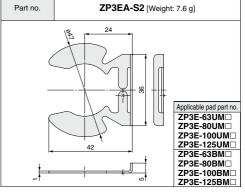






#### Male Thread Adapter (Vacuum inlet: Lateral)







#### Female Thread Adapter (Vacuum inlet: Lateral)





#### Stopper





#### **Seal Washer**

ZP3EA-SW6

ZP3EA-SW10

ZP3EA-SW12

ZP3EA-SW16

1.3 14

1.6 15.5

2 28

24.3

|            |                                   | ZP3   | EA-SW6 [V             | /eight: 1.0 g]             |  |
|------------|-----------------------------------|-------|-----------------------|----------------------------|--|
| Part no.   | <b>ZP3EA-SW10</b> [Weight: 1.1 g] |       |                       |                            |  |
| ranno.     | <b>ZP3EA-SW12</b> [Weight: 4.2 g] |       |                       |                            |  |
|            |                                   | ZP3   | EA-SW16               | Weight: 5.2 g]             |  |
|            | Core                              | sheet |                       | (Sales unit: 5 pcs.)       |  |
| t          |                                   | Seal  | Materia               | i: Core sheet—Rolled steel |  |
| Dimensions | ;                                 |       |                       | JeaiINDN                   |  |
| Part no.   | t                                 | D A   | pplicable thread size |                            |  |

M6 x 1

M10 x 1

M12 x 1.25

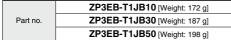
M16 x 1.5

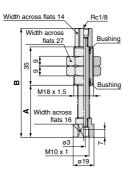
#### **Mounting Nut**

| Part no. | <b>ZPNA-M6</b> [Weight: 0.7 g]   |
|----------|----------------------------------|
|          | <b>ZPNA-M12</b> [Weight: 8.0 g]  |
|          | <b>ZPNA-M14</b> [Weight: 6.6 g]  |
|          | <b>ZPNA-M16</b> [Weight: 10.1 g] |
|          | <b>ZPNA-M18</b> [Weight: 26.4 g] |
|          | <b>ZPNA-M22</b> [Weight: 24.7 g] |
|          |                                  |

|  |  | ns |  |
|--|--|----|--|
|  |  |    |  |
|  |  |    |  |

| Part no. | d          | В  | Н | Sales unit |  |
|----------|------------|----|---|------------|--|
| ZPNA-M6  | M6 x 1     | 8  | 3 |            |  |
| ZPNA-M12 | M12 x 1.25 | 19 | 7 | 10 pcs.    |  |
| ZPNA-M14 | M14 x 1    | 19 | 5 |            |  |
| ZPNA-M16 | M16 x 1.5  | 22 | 6 |            |  |
| ZPNA-M18 | M18 x 1.5  | 27 | 9 | 2 pcs.     |  |
| ZPNA-M22 | M22 x 1.5  | 30 | 8 | 1          |  |





ZP3

ZP3E

ZP2V
ZP2V
ZPT
ZPT
ZPT
ZPT
ZPT

#### **Buffer Assembly (Vacuum inlet: Vertical)**





Dimensions
Part no. A B

Part no. A B

ZP3EB-T1JB10 47.5 99.5

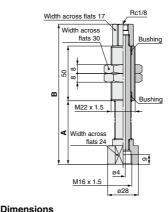
ZP3EB-T1JB30 72.5 124.5

ZP3EB-T1JB50 92.5 144.5

Applicable pad part no.

ZP3E-32UM□
ZP3E-40UM□
ZP3E-50UM□
ZP3E-32BM□
ZP3E-40BM□

ZP3E-50BM□


Part no.

ZP3EB-T2JB10

ZP3EB-T2JB30

ZP3EB-T2JB50

| ZP3EB-T2JB10 [Weight: 308 g] | ZP3EB-T2JB30 [Weight: 337 g] | ZP3EB-T2JB50 [Weight: 360 g]



A B

103 173

128

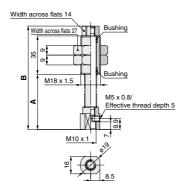
153

Applicable pad part no.

ZP3E-63UM

ZP3E-80UM

ZP3E-100UM


ZP3E-125UM

ZP3E-63BM□ ZP3E-80BM□ ZP3E-100BM□ ZP3E-125BM□

ZP3E-12<u>5BM□</u>

#### **Buffer Assembly (Vacuum inlet: Lateral)**





 Dimensions

 Part no.
 A
 B

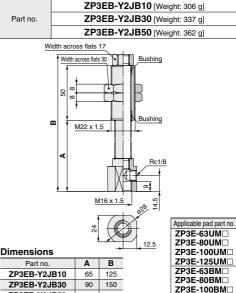
 ZP3EB-Y1JB10
 50.5
 94.5

 ZP3EB-Y1JB30
 75.5
 119.5

 ZP3EB-Y1JB50
 95.5
 139.5

Applicable pad part no.

ZP3E-32UM□

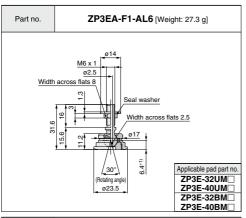

ZP3E-40UM□

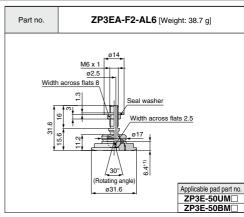
ZP3E-50UM□

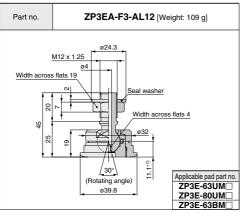
ZP3E-32BM□

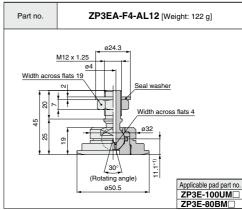
ZP3E-40BM□

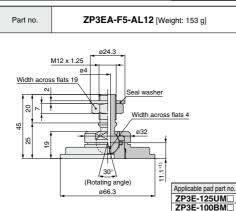
ZP3E-50BM□

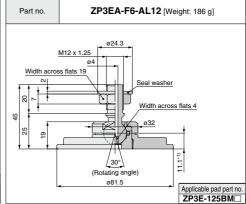




ZP3EB-Y2JB50


110 170


# **Ball Joint Assembly/Unit Part No.**


#### **Ball Joint Assembly**









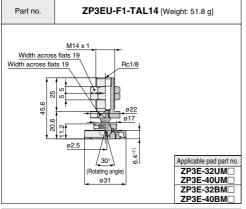


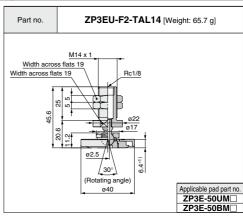


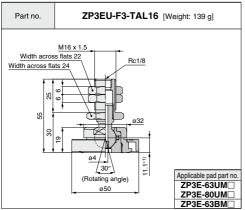

\*1) Center of the rotating angle

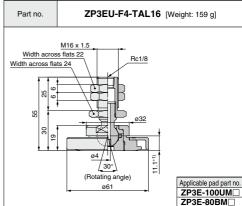
ZP3E

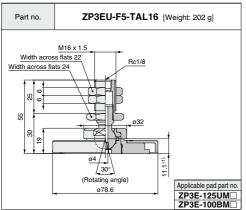
ZP2

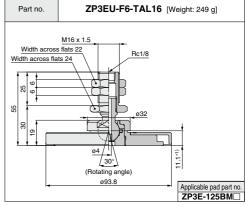

ZP2V ZP


ZPT ZPR


XT661

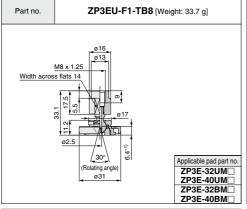

487 ®

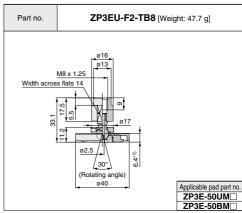

#### **Ball Joint Unit: Male Thread (Vacuum inlet: Vertical)**



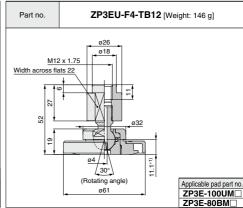


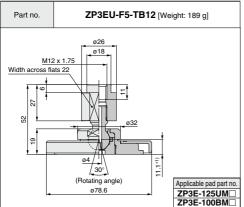


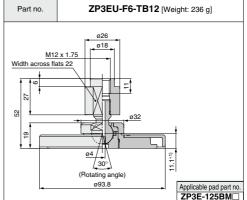







<sup>\*1)</sup> Center of the rotating angle


#### **Ball Joint Unit: Female Thread (Vacuum inlet: Vertical)**









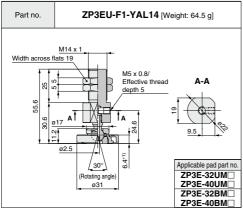


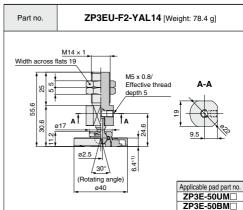



\*1) Center of the rotating angle

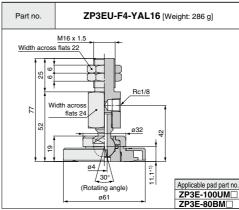
ZΡ ZPT ZPR

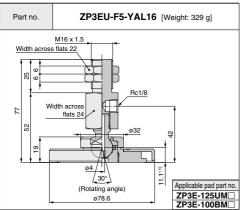
ZP3

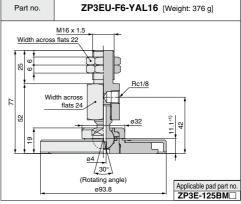

ZP3E


ZP2 ZP2V

XT661

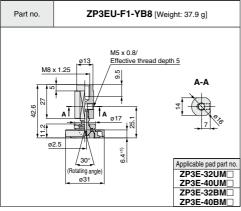

489 ®

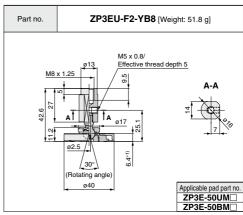

#### Ball Joint Unit: Male Thread (Vacuum inlet: Lateral)

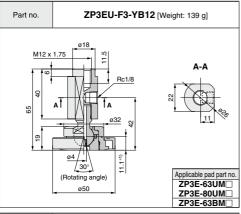


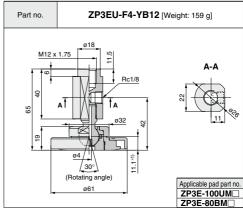


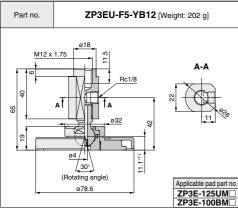


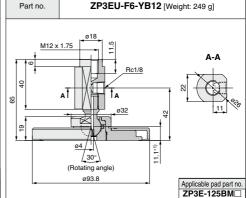





<sup>\*1)</sup> Center of the rotating angle


## **Ball Joint Unit: Female Thread (Vacuum inlet: Lateral)**







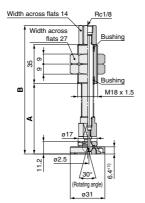







ZP3

ZP2

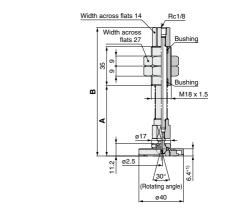

ZP2V

ZPT ZPR

# **Ball Joint Buffer Unit Part No.**

#### **Ball Joint Buffer Unit (Vacuum inlet: Vertical)**



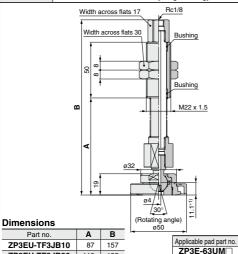



# Dimensions

| Part no.      | A     | В     |
|---------------|-------|-------|
| ZP3EU-TF1JB10 | 63.1  | 115.1 |
| ZP3EU-TF1JB30 | 88.1  | 140.1 |
| ZP3EU-TF1JB50 | 108.1 | 160.1 |

| Applicable pad part no. |
|-------------------------|
| ZP3E-32UM□              |
| ZP3E-40UM               |
| ZP3E-32BM□              |
| ZP3E-40BM               |

| Part no. | ZP3EU-TF2JB10 [Weight: 211 g]        |
|----------|--------------------------------------|
|          | <b>ZP3EU-TF2JB30</b> [Weight: 225 g] |
|          | ZP3EU-TF2JB50 [Weight: 237 g]        |




#### **Dimensions**

| Part no.      | Α     | В     |
|---------------|-------|-------|
| ZP3EU-TF2JB10 | 63.1  | 115.1 |
| ZP3EU-TF2JB30 | 88.1  | 140.1 |
| ZP3EU-TF2JB50 | 108.1 | 160.1 |

| Applicable pad part no |
|------------------------|
| ZP3E-50UM□             |
| ZP3E-50BM□             |
|                        |

|          | <b>ZP3EU-TF3JB10</b> [Weight: 409 g] |  |  |
|----------|--------------------------------------|--|--|
| Part no. | ZP3EU-TF3JB30 [Weight: 438 g]        |  |  |
|          | ZP3EU-TF3JB50 [Weight: 461 g]        |  |  |
|          | Wighth parage flate 17 BC1/8         |  |  |

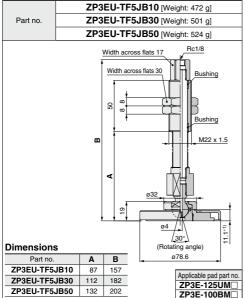


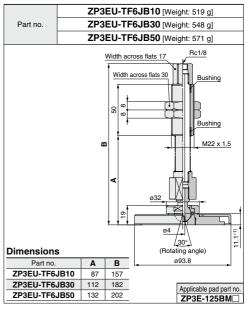
| Part no.   | <b>ZP3EU-TF4JB30</b> [Weight: 458 g] |      |          |                               |
|------------|--------------------------------------|------|----------|-------------------------------|
|            |                                      | ZP3  | EU-TI    | <b>F4JB50</b> [Weight: 481 g] |
| Dimensions | ;                                    | B 20 | h across | THE I                         |
| Part no.   |                                      | Α    | В        |                               |
| ZP3EU-TF4  |                                      | 87   | 157      | Applicable pad part no.       |
| ZP3EU-TF4  |                                      | 112  | 182      | ZP3E-100UM□                   |
| ZP3EU-TF4  | JB50                                 | 132  | 202      | ZP3E-80BM□                    |

ZP3EU-TF4JB10 [Weight: 429 g]

112 182

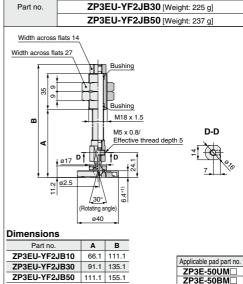
ZP3EU-TF3JB30


ZP3EU-TF3JB50


ZP3E-80UM

ZP3E-63BM

<sup>\*1)</sup> Center of the rotating angle


#### **Ball Joint Buffer Unit (Vacuum inlet: Vertical)**





#### **Ball Joint Buffer Unit (Vacuum inlet: Lateral)**

| Part no.          | ZP3                                                  | BEU-YF1JB | <b>10</b> [Weight: 195 g]<br><b>30</b> [Weight: 211 g]<br><b>50</b> [Weight: 224 g] |          |  |
|-------------------|------------------------------------------------------|-----------|-------------------------------------------------------------------------------------|----------|--|
| Width across flat | Bushing M18 x 1.5 M5 x 0.8/ Effective thread depth 5 |           |                                                                                     |          |  |
| Dimensions        |                                                      |           |                                                                                     |          |  |
| Part no.          | A                                                    | В         | Applicable pad part r                                                               | 10.      |  |
| ZP3EU-YF1J        | <b>B10</b> 66.1                                      | 111.1     | ZP3E-32UM                                                                           | ╣╽       |  |
| ZP3EU-YF1J        | <b>B30</b> 91.1                                      | 135.1     | ZP3E-40UM<br>ZP3E-32BM                                                              | ╣        |  |
| ZP3EU-YF1J        | <b>B50</b> 111.1                                     | 155.1     | ZP3E-40BM                                                                           | <u> </u> |  |

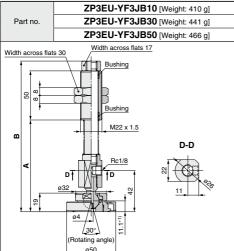


ZP3EU-YF2JB10 [Weight: 209 g]

\*1) Center of the rotating angle

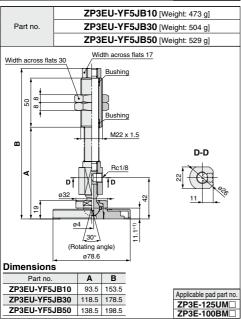
Part no.

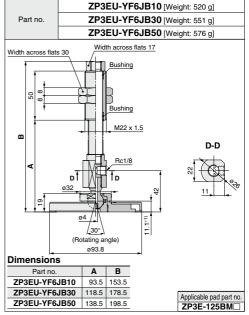
ZP3


ZP3E

ZP2

ZP2V


ZΡ


#### **Ball Joint Buffer Unit (Vacuum inlet: Lateral)**



| Dimensions    | 30°<br>stating ar | ngle) | 11-1-1-                  |
|---------------|-------------------|-------|--------------------------|
| Part no.      | Α                 | В     |                          |
| ZP3EU-YF3JB10 | 93.5              | 153.5 | Applicable pad part no.  |
| ZP3EU-YF3JB30 | 118.5             | 178.5 | ZP3E-63UM□               |
| ZP3EU-YF3JB50 | 138.5             | 198.5 | ZP3E-80UM□<br>ZP3E-63BM□ |

|                                         |                               |                    |                  | eight: 430 g]           |
|-----------------------------------------|-------------------------------|--------------------|------------------|-------------------------|
| Part no.                                | ZP3EU-YF4JB30 [Weight: 461 g] |                    |                  |                         |
|                                         | ZP3                           | EU-YF4             | JB50 [We         | eight: 486 g]           |
| Width acros                             | s flats 30                    | Width ac           | ross flats 17    |                         |
| 111111111111111111111111111111111111111 | \                             | Bus                | hina             |                         |
| B A 50                                  | D1 04                         | Bus M:             | hing<br>22 x 1.5 | D-D                     |
|                                         | ,                             | ting angle)<br>ø61 |                  |                         |
| Dimensions                              | 3                             |                    |                  |                         |
| Part no.                                | Α                             | В                  |                  |                         |
| ZP3EU-YF4                               | <b>JB10</b> 93.5              | 153.5              |                  | Applicable pad part no. |
| ZP3EU-YF4                               | <b>JB30</b> 118.5             | 178.5              |                  | ZP3E-100UM              |
| ZP3EU-YF4                               | <b>JB50</b> 138.5             | 198.5              |                  | ZP3E-80BM               |
|                                         |                               |                    |                  |                         |





<sup>\*1)</sup> Center of the rotating angle