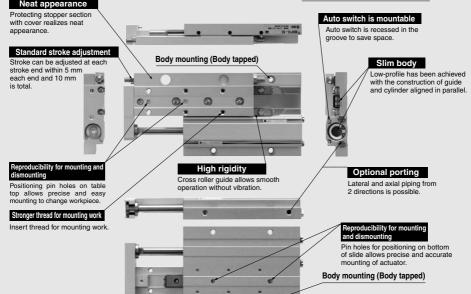
Low Profile Slide Table

Series MXF

ø8, ø12, ø16, ø20

Low-profile and compact type, air slide table with the construction of guide and cylinder aligned in parallel.

Low-profile and compactness have been achieved with the construction of guide and cylinder aligned in parallel.


Model	Height x Width (mm)	Height comparison to MXS
MXF8	16 x 58	67%
MXF12	18.5 x 68	59%
MXF16	21 x 80	53%
MXF20	27 x 92	54%

MXS
MXQ
MXF
MXW
MXJ
MXP
MXY
MTS

MXH

-Z

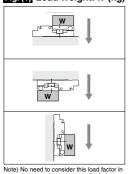
RoHS

Mounting can be done from 2 directions top side (through-hole) and bottom side (body tapped).

1. Body tapped	2. Body through-hole

Series Variations

Model	Bore size (mm)		5	Strok	e (m	Auto switch		
		10	20	30	50	75	100	Reed auto switch
MXF8	8	-+	+	+	+	+	_	D-A9 , D-A9 V Solid state auto switch
MXF12	12		+	-+-	+	+		— D-M9□, D-M9□V
MXF16	16		-	-+-	+	+		2-color indication solid state auto switch
MXF20	20		+	+	+	+	-+-	D-M9□W, D-M9□WV


D-□ -**X**□

Series MXF Model Selection

lodel Selection Step Operating Conditions	Formula/Data	Selection Example
Enumerate the operating conditions considering the mounting position and workpiece configuration.	Model to be used Type of cushion Workpiece mounting position Mounting orientation Average operating speed Va (mm/s) Load weight W (kg): [cg(1) Overhang Ln (mm); [cg(2)]	Cylinder: MXF20-50 Cushion: Rubber bumper Workpiece table mounting Mounting: Horizontal wall moun Average operating speed: Nalowable load: W = 0.5 [k Li = 10 mm La = 30 mm La = 30 mm
Kinetic Energy		L3 = 30 mm
Find the kinetic energy E (J) of the load. Find the allowable kinetic energy Ea (J). Confirm that the kinetic energy of the load does not exceed the allowable kinetic energy.	$\begin{split} E &= \frac{1}{2} \cdot W \left(\frac{V}{1000} \right)^2 \\ \text{Collision speed V} &= \underline{1.4} \cdot Va^{*} \right) \frac{\text{Correction factor}}{(\text{Reference values})} \\ \text{Workpiece mounting coefficient K: [373(3)]} \\ \text{Max. allowable kinetic energy Emax: [able (1)]} \\ \text{Kinetic energy (E) } \leq \text{Allowable kinetic energy (Ea)} \end{split}$	$E = \frac{1}{2} \cdot 0.5 \left(\frac{420}{1000} \right)^2 = 0.044$ V = 1.4 × 300 = 420 Ea = 1 \cdot 0.16 = 0.16 Can be used based on E = 0.044 \le Ea = 0.16
Load Factor		
Load factor of load weight		
Find the allowable load weight Wa (kg). Note) No need to consider this load factor in the case of using perpendicularly in a vertical position (Define $(\Delta t = 0.)$ Find the load factor of the load weight $(\Delta t_1, \ldots, \Delta t_n)$	Wa = K-β-Wmax Workpiece mounting coefficient K: Fig.(3) Allowable load weight coefficient β: Graph (1) Max. allowable load weight Wmax: Table (2) (X ₁ = W/Wa	$\label{eq:stars} \begin{array}{l} \mbox{Wa} = 1 \times 1 \times 4 = 4 \\ \mbox{K} = 1 \\ \mbox{\beta} = 1 \\ \mbox{Wmax} = 4 \\ \mbox{$\Omega_1 = 0.5/4 = 0.125$} \end{array}$
Load factor of the static mo	ment	
Find the static moment M (N·m). Find the allowable static moment Ma (N·m).	M = W x 9.8 (Ln + An)/1000 Moment center position distance compensation amount An: [Able(6)] Ma = K-Y-Mmax Workpiece mounting coefficient K: [Fig.(3) Allowable moment coefficient Y: (Graph (2)) Maximum allowable moment Mmax: [Able (4)]	$\begin{tabular}{ c c c c c } \hline Yawing & Rolling \\ \hline Examine My. & Examine Mr. \\ My = 0.5 \times 9.8 (10 + 11)/1000 = 0.11 & Mr = 0.5 \times 9.8 (30 + 17)/1000 = \\ A_3 = 11 & A_6 = 17 \\ \hline May = 1 \times 1 \times 9.14 = 9.14 & Mar = 9.14 (Same as May) \\ Mymax = 9.14 \\ K = 1 \\ \gamma = 1 \\ \hline \end{tabular}$
Find the load factor Ω_2 of the static moment.	Cl₂ = M/Ma	$\Omega_2 = 0.11/9.14 = 0.012$ $\Omega_2' = 0.23/9.14 = 0.025$
Load factor of dynamic mor	nent	
Find the dynamic moment Me (N·m).	$\begin{split} &Me = 1/3 \cdot We \times 9.8 \ \frac{(Ln + An)}{1000} \\ &Collision equivalent to impact We = \delta \cdot W \cdot V \\ &\delta : Bumper coefficient \\ &With urethane bumper (Standard) = 4/100 \\ &Corrected value for moment \\ ¢er position distance An: Table (6) \end{split}$	$\label{eq:product} \begin{array}{ c c } \hline \mbox{Examine Mep.} \\ \hline \mbox{Mep} = 1/3 \times 8.4 \times 9.8 \times \frac{(30+17)}{1000} = 1.3 \\ \hline \mbox{We} = 4/100 \times 0.5 \times 420 = 8.4 \\ \hline \mbox{A}_2 = 17 \\ \hline \mbox{Meap} = 1 \times 0.7 \times 9.14 = 6.40 \\ \hline \mbox{K} = 1 \\ \hline \mbox{Y} = 0.7 \\ \hline \mbox{Mpmax} = 9.14 \\ \end{array}$
Find the allowable dynamic moment Mea (N·m).	Mea = K-Ý·Mmax Workpiece mounting coefficient K: Fig. (3) Allowable moment coefficient ½ Graph (2) Max. allowable moment Mmax: Graph (4)	$\begin{aligned} & & (\chi_3 = 1.3/6.40 = 0.20 \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$
Find the load factor α_3 of the dynamic moment.	CL3 = Me/Mea	We = 0.4 A4 = 34 Meay = 6.40 (Same value as Meap) Ω(3 = 1.8/6.4 = 0.28
Sum of the load factors		0.3 = 1.8/6.4 = 0.28
Use is possible if the sum of the load factors does not exceed 1.	$\Sigma \alpha n = \alpha_1 + \alpha_2 + \alpha_3 \le 1$	$\begin{split} & \sum Q(n=Q'_1+Q'_2+Q'_2+Q'_3+Q'_3) \\ & = 0.125+0.012+0.025+0.20+0.28=0.642\leq 1 \\ & \text{And it is possible to use.} \end{split}$

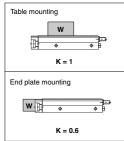

Model Selection Series MXF

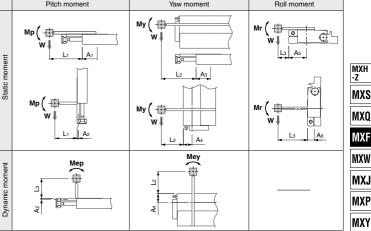
Fig. (1) Load Weight: W (kg)

the case of using perpendicularly in a vertical position.

Fig. (3) Workpiece Mounting Coefficient: K

Table (2) Maximum Allowable Load Weight: Wmax (kg)

Model	Maximum allowable load weight
MXF8	0.6
MXF12	1
MXF16	2
MXF20	4


Table (4) Maximum Allowable Moment: Mmax (N·m)

Madal	Stroke (mm)												
woder		30	50	75	100								
MXF8	0.56	0.78	0.98										
MXF12		1.65		3.34									
MXF16			3.41	5.69	7.96								
MXF20			6.66	9.14	13.70	18.27							

Symbol

Symbol	Definition	Unit	Symbol	Definition	Unit
An (n = 1 to 6)	Correction values of moment center position distance	mm	Va	Average operating speed	mm/s
E	Kinetic energy	J	w	Load weight	kg
Ea	Allowable kinetic energy	J	Wa	Allowable load weight	kg
Emax	Max. allowable kinetic energy	J	We	Mass equivalent to impact	kg
Ln (n = 1 to 3)	Overhang	mm	Wmax	Max. allowable load weight	kg
M (Mp, My, Mr)	Static moment (pitch, yaw, roll)	N∙m	α	Load factor	
Ma (Map, May, Mar)	Allowable static moment (pitch, yaw, roll)	N⋅m	β	Allowable load weight coefficient	
Me (Mep, Mey)	Dynamic moment (pitch, yaw)	N∙m	γ	Allowable moment coefficient	
Mea (Meap, Meay)	Allowable dynamic moment (pitch, yaw)	N⋅m	δ	Damper coeficient	
Mmax (Mpmax, Mymax, Mrmax)	Maximum allowable moment (pitch, yaw, roll)	N⋅m	к	Workpiece mounting coefficient	
V	Collision speed	mm/s			

Fig. (2) Overhang: Ln (mm), Correction Values for Moment Center Distance: An (mm) Pitch moment Yaw moment Roll moment

Note) Static moment: Moment generated by gravity Dynamic moment: Moment generated by impact when colliding with stopper

Table (1) Maximum Allowable Kinetic Energy: Emax (J)

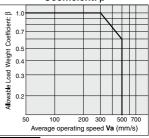
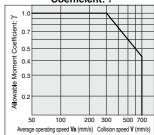

	· JJ · (·)
Model	Allowable kinetic energy
	Rubber bumper
MXF8	0.027
MXF12	0.055
MXF16	0.11
MXF20	0.16

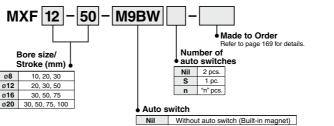
Table (3) Moment Center Position Distance Compensation Amount: An (mm)


	Moment center position distance compensation amount (Refer to Fig. (2).)											
Model	A 1	A2	Аз	A 4	A5	A6						
MXF8	6 ^{Note)}	10	6 ^{Note)}	21	21	10						
MXF12	10	11	10	23	23	11						
MXF16	10	12	10	28	28	12						
MXF20	11	17	11	34	34	17						

Note) 16 mm for MXF8-10 only.

Graph (1) Allowable Load Weight MTS Coefficient: β

Graph (2) Allowable Moment Coefficient: γ

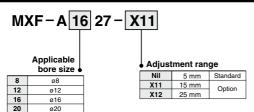

Note) Use the average operating speed when calculating static moment. Use the collision speed when calculating dynamic moment.

D-🗆
-X□

167

Low Profile Slide Table Series MXF

How to Order



* For the applicable auto switch model, refer to the table below.

* Solid state auto switches marked with " " are produced upon receipt of order.

RoHS

How to Order Stroke Adjusting Bolt (Accessory)

* -X12 (adjustable range 25 mm) is not available in Series MXF8/MXF12.

Applicable Auto Switches/Refer to pages 1893 to 2007 for the detailed specifications of auto switches.

			light		L	oad volta	age	Auto swit	ch model	Lead	wire I	engti	n (m)											
Туре	Special function	Electrical entry	Indicator	Wiring (Output)	DC		AC	Perpendicular	In-line	0.5 (Nil)	1 (M)	3 (L)	5 (Z)	Pre-wired connector	Applic loa									
÷				3-wire (NPN)	51(40)(5V,12V		M9NV	M9N	•	•	•	0	0	IC circuit									
switch				3-wire (PNP)			50,120		M9PV	M9P	•	•	•	0	0	IC circuit								
s				2-wire		12V		M9BV	M9B	•	•	•	0	0	-									
auto	Discussion indication			3-wire (NPN)	51/ 101	51/101/	51(10)	51/10	[5V,12V	51/ 101/		M9NWV	M9NW	•	•	•	0	0	IC circuit	Dalau	
	Diagnostic indication (2-color indication)	Grommet	Yes	3-wire (PNP)	24V	12V	-	M9PWV	M9PW	•	•	•	0	0		Relay, PLC								
state				2-wire				12V 5V,12V						12V		M9BWV	M9BW	•	•	٠	0	0	-	FLO
	Mater resistant			3-wire (NPN)											M9NAV*1	M9NA*1	0	0	•	0	0	IC circuit		
Solid	Water resistant (2-color indication)			3-wire (PNP)	50,12	5								M9PAV*1	M9PA*1	0	0	•	0	0	IC CITCUIL			
Ň				2-wire		12V		M9BAV*1	M9BA*1	0	0	٠	0	0	-									
Reed auto switch		Ye	Yes	3-wire (Equiv. to NPN)	-	5V	_	A96V	A96	•	-	•	-	-	IC circuit	—								
to s		Grommet		2-wire	24V	12V	100V	A93V*2	A93	•	•	٠	•	-	-	Relay,								
au			None	2-wire	241	120	100V or less	A90V	A90		—	٠	-	—	IC circuit	PLC								

*1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.

*2 1 m type lead wire is only applicable to D-A93.

* Lead wire length symbols: 0.5 m Nil (Example) M9NW

- 1 m ······ M (Example) M9NWM
- 3 m ······ L (Example) M9NWL
- 5 m ······ Z (Example) M9NWZ

* Since there are other applicable auto switches than listed, refer to page 177 for details.

* For details about auto switches with pre-wired connector, refer to pages 1960 and 1961.

* Auto switches are shipped together (not assembled).

-							
Bore size (mm)	8	12	16	20			
Piping port size	M3 x 0.5		M5 x 0.8	cting 7 MPa Pa 0°C			
Fluid		A	ir	tting MPa Pa p°C mm/s n both sides be witch (2-wire, 3-wire)			
Action		Double	acting				
Operating pressure		0.15 to 0	0.15 to 0.7 MPa				
Proof pressure		1.05 MPa					
Ambient and fluid temperature		-10 to	-10 to 60 °C				
Operating speed range (Average operating speed) Note)		50 to 500 mm/s					
Cushion		Rubber bumpe	0 to 500 mm/s				
Lubrication	Non-lube						
Auto switch (Option)	Reed auto switch Solid state auto switch (2-wire, 3-wire) 2-color indication solid state auto switch (2-wire, 3-wir						
Stroke length tolerance		+1 0 m	m				
Stroke adjustment range	Exten	sion end 5 mm/	Retraction end	5 mm			
te) Average operating speed: Speed t	hat the stroke is	divided by a p	oriod of time fr	om starting th			

Note) Average operating speed: Speed that the stroke is divided by a period of time from starting the operation to reaching the end.

Tł	heoretica	al Output								
	Bore size	Rod size	Operating	Piston area		Operating pres		essure	(MPa)	
	(mm)	(mm)	direction	(mm²)	0.2	0.3	0.4	0.5	0.6	0.7
	8	4	OUT	50	10	15	20	25	30	35
	0	4	IN	38	8	11	15	19	23	27
	12	6	OUT	113	23	34	45	57	68	79
	12	6	IN	85	17	26	34	43	51	60
	16	8	OUT	201	40	60	80	101	121	141
	10	0	IN	151	30	45	60	76	91	106
		10	OUT	314	63	94	126	157	188	220
1	20	10	IN	236	47	71	94	118	142	165

Made to Order: Individual Specifications (For details, refer to pages 178 and 179.)

Symbol	Specifications
-X7	PTFE grease
-X9	Grease for food processing machines
-X11	Adjusting bolt, long specification (Adjustment range: 15 mm)
-X33	Without built-in auto switch magnet
-X39	Fluororubber seal
-X42	Anti-corrosive specifications for guide unit
-X45	EPDM seal

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Standard Stroke

Specifications

Model	Standard stroke (mm)
MXF8	10, 20, 30
MXF12	20, 30, 50
MXF16	30, 50,7 5
MXF20	30, 50, 75, 100

Weight

						(3)			
Model	Standard stroke (mm)								
Woder	10 20 30 50		75	100					
MXF8	120	130	170	<u> </u>		_			
MXF12	_	- 210		360	_	_			
MXF16	3 — — 360		500	690	_				
MXF20	_	_	600	750	1060	1370			

Moisture Control Tube Series IDK

Made to Order

When operating an actuator with a small diameter and a short stroke at a high frequency, the dew condensation (water droplet) may occur inside the piping depending on the conditions. Simply connecting the moisture control tube to the actuator will prevent dew condensation from occurring. For details, refer to <u>Series IDK</u> in the WEB catalog.

D-□ -**X**□

MXH -Z MXS MXQ MXF MXW MXJ

MXP

MXY Mts

—► IN

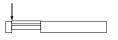
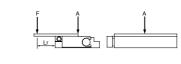

(a)

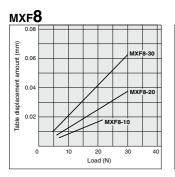
Table Deflection (Reference Values)

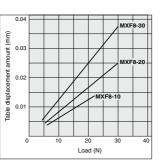
Table displacement due to

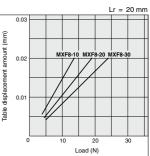
pitch moment load

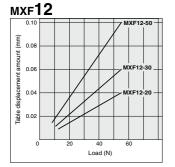
Table displacement when loads are applied to the section marked with the arrow at the full stroke.

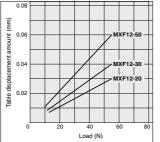

Table displacement due to yaw moment load

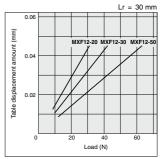

ΓĒ


Table displacement when loads are applied to the section marked with the arrow at the full stroke.


Table displacement due to roll moment load


Table displacement of section A when loads are applied to the section ${\sf F}$ with the slide table retracted.





Low Profile Slide Table Series MXF

The graphs below show the table displacement when the static moment load is applied to the table. The graphs do not show the loadable weight. Refer to the Model Selection for the loadable weight.

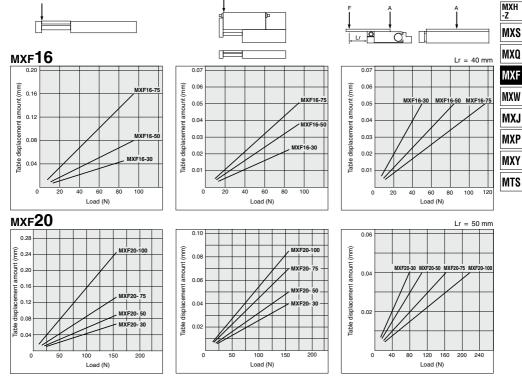
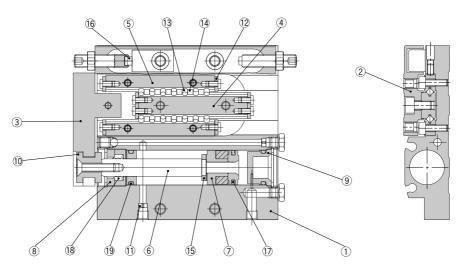

Table displacement due to pitch moment load

Table displacement when loads are applied to the section marked with the arrow at the full stroke.

Table displacement due to yaw moment load

Table displacement when loads are applied to the section marked with the arrow at the full stroke. Table displacement due to roll moment load


Table displacement of section A when loads are applied to the section ${\sf F}$ with the slide table retracted.

D-□ -X□

Series MXF

Construction

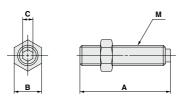
Component Parts

No.	Description	Material	Note
1	Body	Aluminum alloy	Hard anodized
2	Table	Aluminum alloy	Hard anodized
3	End plate	Aluminum alloy	Hard anodized
4	Rail	Carbon tool steel	Heat treated
5	Guide	Carbon tool steel	Heat treated
6	Rod	Stainless steel	
7	Piston assembly	—	With magnet
8	Seal support	Brass	Electroless nickel plated
9	Head cap	Resin	
10	Floating bushing	Stainless steel	
11	Orifice	Brass	Electroless nickel plated
12	Roller stopper	Stainless steel	
13	Cylindrical roller	High carbon chrome bearing steel	
14	Roller spacer	Resin	
15	Rod bumper	Polyurethane	

Component Parts

No.	Description	Material	Note
16	Adjust bumper	Polyurethane	
17	Piston seal	NBR	
18	Rod seal	NBR	
19	O-ring	NBR	

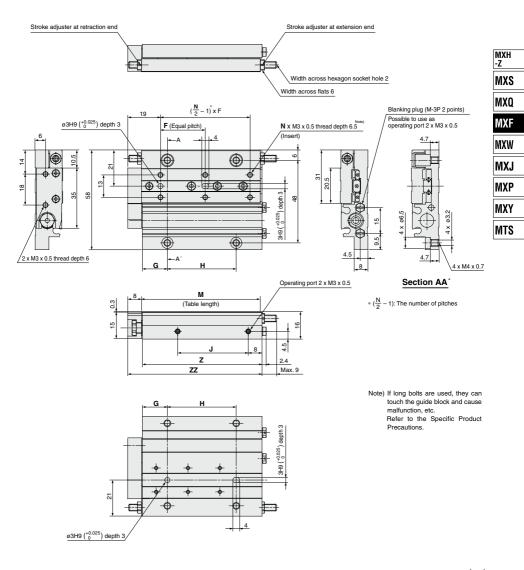
Replacement Parts: Seal Kit


Bore size (mm)	Kit no.	Contents			
8	MXF8-PS				
12	MXF12-PS	Set of nos. above (17) to (19)			
16	MXF16-PS	Set of nos. above (1) to (19			
20	MXF20-PS				

* Seal kit includes (1), (18, (19. Order the seal kit, based on each bore size.

Replacement Part: Grease Pack

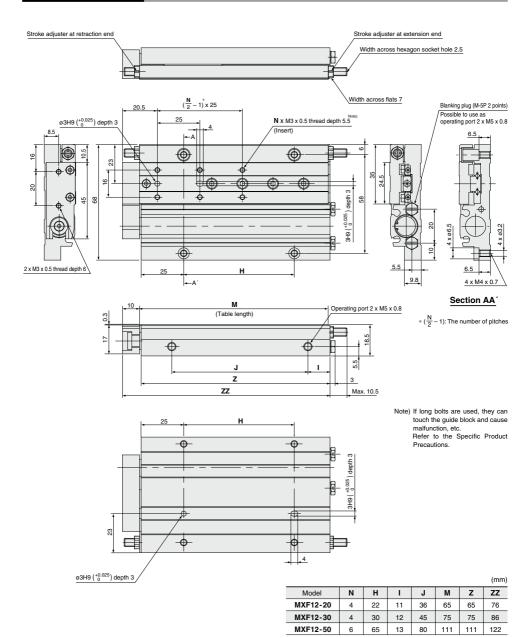
Applied part	Grease pack part no.
Guide	GR-S-010 (10g) GR-S-020 (20g)
Cylinder	GR-L-005 (5g) GR-L-010 (10g)


Dimensions: Stroke Adjustment Bolt

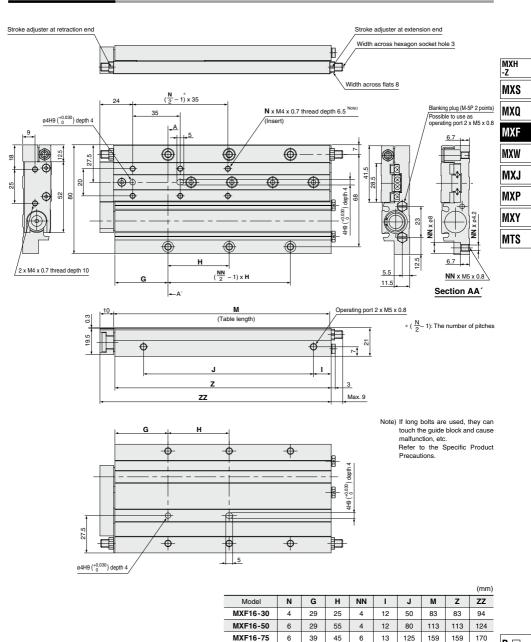
Applicable size	Model	Stroke adjustment range (mm)	A	в	с	м	
MXF8	MXF-A827	5	17	6	2	M4 x 0.7	
IVIAFO	MXF-A827-X11	15	27	0	C 2 2.5 3 4	WI4 X 0.7	
MXF12	MXF-A1227	5	23.5	7	2.5	M5 x 0.8	
WAF12	MXF-A1227-X11	15	33.5		2.5	IVIS X 0.0	
	MXF-A1627	5	26.5		3	M6 x 1	
MXF16	MXF-A1627-X11	15	36.5	8			
	MXF-A1627-X12	25	46.5				
	MXF-A2027	5	30				
MXF20	MXF-A2027-X11	15	40	12	4	M8 x 1	
	MXF-A2027-X12	25	50				

SMC

Dimensions: MXF8

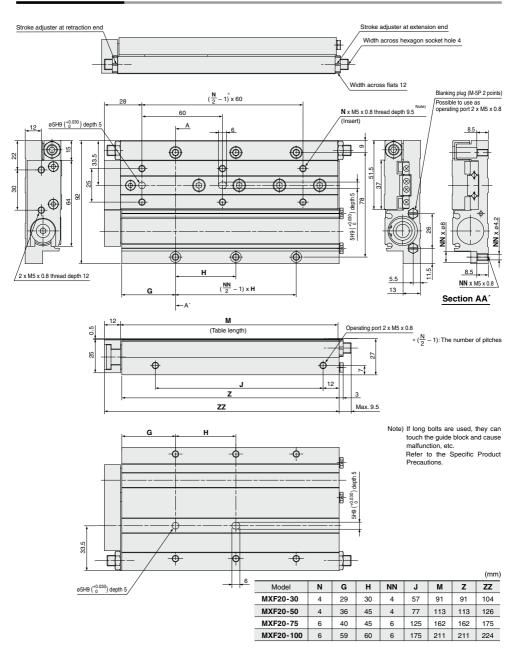


								(mm)
Model	F	N	G	н	J	М	Z	ZZ
MXF8-10	20	4	13.5	22	21	49	49.5	58
MXF8-20	26	4	14.5	26	26	54	54.5	63
MXF8-30	26	6	14.5	40	41	69	69.5	78

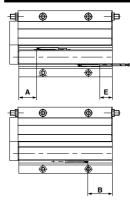

-**X**□

D-🗆

Dimensions: MXF 12


Dimensions: MXF16

D-□ -X□


Series MXF

Dimensions: MXF20

Series MXF **Auto Switch Mounting**

Auto Switch Proper Mounting Position (Detection at Stroke End)

Reed Auto Switch: D-A90, D-A93, D-A96, D-A90V, D-A93V, D-A96V (mm)		
				В							E		
Model	A	Stroke				Stroke							
		10	20	30	50	75	100	10	20	30	50	75	100
MXF8	9.5	10	5	10	—	—	—	8 (5.5)	3 (0.5)	8 (5.5)	—	—	—
MXF12	12	-	13.1	13.1	29.1	—	—	_	11.1 (8.6)	11.1 (8.6)	27.1 (24.6)	—	—
MXF16	17.2	_	_	15.8	25.8	46.8	-	_	_	13.8 (11.3)	23.8 (21.3)	44.8 (42.3)	—
MXF20	19.4	_	_	20.7	22.7	46.2	70.7	_	_	18.7 (16.2)	20.7 (18.2)	44.2 (41.7)	68.7 (66.2)

Solid State Auto Switch: D-M9B, D-M9N, D-M9P, D-M9BW, D-M9NW, D-M9PW, D-M9DA (mm)

				I	в					I	E				E	E (D-I	/9⊐A)		
Model	A			Str	oke					Str	oke					Str	oke			
		10	20	30	50	75	100	10	20	30	50	75	100	10	20	30	50	75	100	M
MXF8	13.5	14	9	14	-	-	—	4	-1	4	-	-	-	2	-3	2	-	-	—	M
MXF12	16	_	17.1	17.1	33.1	_	_	_	7.1	7.1	23.1	-	_	_	5.1	5.1	21.1	_	—	IVI
MXF16	21.2	_	—	19.8	29.8	50.8	_	_	_	9.8	19.8	40.8	_	_	-	7.8	17.8	38.8	—	M
MXF20	23.4	—	—	24.7	26.7	50.2	74.7	—	-	14.7	16.7	40.2	64.7	_	-	12.7	14.7	38.2	62.7	

Solid State Auto Switch: D-M9BV, D-M9NV, D-M9PV, D-M9BWV, D-M9NWV, D-M9PWV, D-M9DAV (mm)

				E	3					E	E				E	(D-M	9□A'	V)	
Model	A	Stroke				Stroke					Stroke								
		10	20	30	50	75	100	10	20	30	50	75	100	10	20	30	50	75	100
MXF8	13.5	14	9	14	—	_	—	6	1	6	-	-	-	4	-1	4	-	-	—
MXF12	16	_	17.1	17.1	33.1	_	—	_	9.1	9.1	25.1	-	-	_	7.1	7.1	23.1	-	—
MXF16	21.2	_	_	19.8	29.8	50.8	—	_	_	11.8	21.8	42.3	-	_	-	9.8	19.8	40.3	—
MXF20	23.4	_	—	24.7	26.7	50.2	74.7	_	_	16.7	18.7	42.2	66.7	_	_	14.7	16.7	40.2	64.7

* (): Denotes the values of D-A93.

Note) Adjust the auto switch after confirming the operating conditions in the actual setting.

Auto Switch Mounting

Auto switch mounting screw (included with auto switch) Watchmaker's screwdrive

/Auto switch

Auto Switch Mounting Tool

Caution When adjusting the auto switch mounting screw (included with auto switch), use a watchmaker's screwdriver with a handle about 5 to 6 mm in diameter.

Tiahtenina Toraue

Tightening Torque of Auto Switch Mounting Screw (N.m)

ingitioning rolquo of riato official incultang ooron (itti							
Auto switch model	Tightening torque						
D-A9□(V)	0.10 to 0.20						
D-M9□(V)							
D-M9□W(V)	0.05 to 0.15						
D-M9□A, M9□AV							

Operating Range

Auto switch model	Applicable bore size (mm)						
Auto switch model	8	12	16	20			
D-A9□(V)	4.5	5	6	7			
D-M9□, M9□V D-M9□W, M9□WV D-M9□A, M9□AV	3	3	4.5	5			

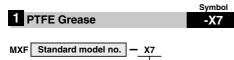
* Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed (assuming approximately ±30% dispersion). It may vary substantially depending on an ambient environment.

Other than the models listed in "How to Order", the following auto switches are applicable.

* Normally closed (NC = b contact) solid state auto switches (D-F9G/F9H types) and solid state auto switch D-F8 are also available.

For details, refer to pages 1910 and 1911.

D-I


MXQ MXF MXW ΛXJ /IXP ΛXY /ITS

MXH -Z MXS

Series MXF Made to Order: Individual Specifications 1

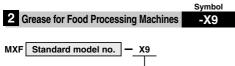
Please contact SMC for detailed dimensions, specifications, and lead times.

• PTFE grease

PTFE grease is used for all parts that grease is applied.

Specifications

 Type
 PTFE grease


 Bore size (mm)
 8, 12, 16, 20

* Dimensions other than the above is the same as the standard type.

A Warning

Precautions

Be aware that smoking cigarettes, etc. after your hands have come into contact with the grease used in this cylinder can create a gas that is hazardous to humans.

Grease for food processing machines

Grease for food processing machines is used for all parts that grease is applied.

Specifications

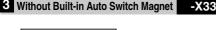
Туре	Grease for food processing machines (NSF-H1 certified)/Aluminum complex soap base grease
Bore size (mm)	8, 12, 16, 20

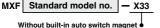
* Dimensions other than the above is the same as the standard type.

Caution Do not use this cylinder in a food-related environment. Soliash zone

<Cannot be mounted> Food zone---Food may directly contact with this cylinder, and is treated as food products.

<Can be mounted> Splash zone--Food may directly contact with this cylinder, but is not treated as food


Non-food zone...This cylinder do not directly

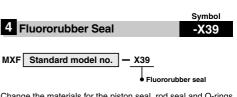


Food zone

Cannot to be mounted

Symbol

Auto switch magnet is not built in.

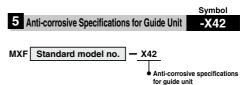

Specifications

products

contact food.

Туре	Without built-in auto switch magnet
Bore size (mm)	8, 12, 16, 20
Auto switch	Not mountable

* Dimensions other than the above is the same as the standard type



Change the materials for the piston seal, rod seal and O-rings to fluororubber.

Specifications

Туре	Fluororubber seal
Bore size (mm)	8, 12, 16, 20
Seal material	Fluororubber

* Dimensions other than the above is the same as the standard type.

Rail and guide are given anti-corrosive treatment.

Specifications

Туре	Anti-corrosive guide unit
Bore size (mm)	8, 12, 16, 20
Surface treatment	Special anti-corrosive treatment (2)

* 1 Dimensions other than the above is the same as the standard type.

* 2 Special anti-corrosive treatment makes the rail and the guide black.

MXF Standard model no. - X45

EPDM seal

Change the materials for the piston seal, rod seal and O-rings to EPDM.

Specifications

Туре	EPDM seal			
Bore size (mm)	8, 12, 16, 20			
Seal material	EPDM			
Grease	PTFE grease			

* Dimensions other than the above is the same as the standard type.

Marning Precautions

Be aware that smoking cigarettes, etc. after your hands have come into contact with the grease used in this cylinder can create a gas that is hazardous to humans.

∕⊘SMC

Series MXF Made to Order: Individual Specifications 2 Please contact SMC for detailed dimensions, specifications, and lead times.

7 Adjusting Bolt, Long Specification (Adjustment range: 15 mm)			nbol 11	
MXF Standard model no. – X11				MXH -Z
Adjusting bolt, long specification				MXS
(Adjustment range: 15 mm) he average adjusting stroke range was extended from 5 mm to 15 mm with a long adjusting bolt.				MXQ
Dimensions				MXF
Imensions				MXW
For backward-facing end				MX.
				MXF
				MXY
				MTS
	Model	•	(mm) B	
	Model MXF8	A 10	19	
	MXF12	10	20.5	

•

MXF12	10	20.5
MXF16	10	19
MXF20	10	19.5

179

Series MXF Specific Product Precautions

Be sure to read before handling. Refer to front matter 39 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Mounting

Mounting of Body

A Caution

- Do not scratch or dent the mounting side of the body, table or end plate. It causes play in the guide section and increases sliding resistance.
- Do not scratch or dent on the forward side of the rail or guide. It will result in looseness of the guide section and increased sliding resistance.
- 3. Keep away from objects which are influenced by magnets.

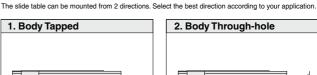
As the piston part has magnets built-in, do not allow close contact with magnetic disks, magnetic cards or magnetic tapes. Data may be erased.

- 4. When mounting the body, use screws with appropriate length and do not exceed the maximum tightening torque. Tightening with a torque above the limit could malfunction. Whereas tightening insufficiently could result in misalignment or come to a drop.
- Be careful when adjusting stroke not to allow cylinder end plate to bottom out against cylinder body.

Positioning

A Caution

 The positioning hole on the table and on the bottom of the body does not have the same center. Positioning hole is meant to be for reproducibility for mounting and dismounting.

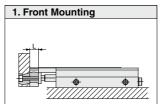

▲ Caution

1. If intermediate stop by external stopper is done, avoid ejection.

If ejection occurs, it may cause damage. In the case the slide table is stopped at an intermediate position by an external stopper then forwarded to the front, return the slide table to the back for just a moment to retract the stopper, then supply pressure to the opposite port to operate slide table.

2. Do not use it in such a way that excessive external force or impact force could work on it.

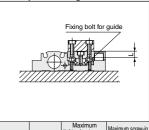
This could result in damage.


Model	Bolt	Maximum tightening torque (N·m)	Maximum screw-in depth L (mm)
MXF8	M4 x 0.7	2.1	4.7
MXF12	M4 x 0.7	2.1	6.5
MXF16	M5 x 0.8	4.4	6.7
MXF20	M5 x 0.8	4.4	8.5

2. Body Through-hole					
Model	Bolt	Maximum tightening torque (N·m)	Maximum screw-in depth L (mm)		
MXF8	M3 x 0.5	1.2	4.7		

Model	Bolt	tightening torque (N·m)	Maximum screw-in depth L (mm)
MXF8	M3 x 0.5	1.2	4.7
MXF12	M3 x 0.5	1.2	6.5
MXF16	M4 x 0.7	2.8	6.7
MXF20	M4 x 0.7	2.8	8.5

▲ Caution 0.02 mm or less of flatness is recommended for the body mounting surface. An uneven mounting surface of a workpiece or a base may cause vibration or increase sliding resistance.


Mounting of Workpiece

Work can be mounted on two sides of the body.

Bolt	Maximum tightening torque (N·m)	Maximum screw-in depth L (mm)
M3 x 0.5	0.9	6
M3 x 0.5	0.9	6
M4 x 0.7	2.1	10
M5 x 0.8	4.4	12
	M3 x 0.5 M3 x 0.5 M4 x 0.7	Bolt tightening torque (N·m) M3 x 0.5 0.9 M3 x 0.5 0.9 M4 x 0.7 2.1

2. Top Mounting

Model	Bolt	tightening torque (N·m)	Maximum screw-in depth L (mm)
MXF8	M3 x 0.5	0.9	6.5
MXF12	M3 x 0.5	0.9	5.5
MXF16	M4 x 0.7	2.1	6.5
MXF20	M5 x 0.8	4.4	9.5

▲ Caution

To prevent the workpiece holding bolts from touching the guide holding bolts, use bolts that are 0.5 mm or more shorter than the maximum screw-in depth.

If the bolts are too long, they hit the end plate and may cause malfunctions.