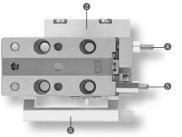
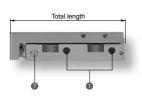
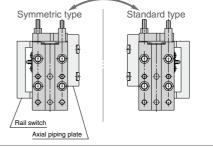

Air Slide Table Series MXJ




SMC

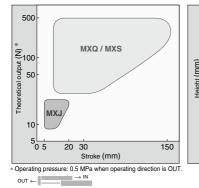
Piping port
Axial piping plate
Axial piping port
Retraction end stroke adjuster
Extension end stroke adjuster
Switch rail
Vacuum port (clean specifications)

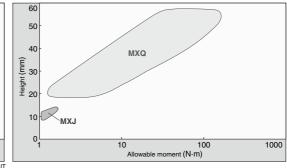

			(mm)
Model	Total length	Width	Height
MXJ4	43	20	10
MXJ6 43		22	11
MXJ8	45	26	13

Note) Values of stroke 10 mm.

Symmetric Style

Piping ports are provided both on the right and left sides. Switch rails and axial piping plates are interchangeable between the right and left side.

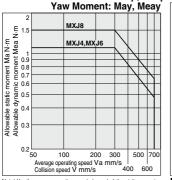



Variations

Mc	del		Stan	dard s	troke	(mm)	Ad	ljuster opt	ion	Piping option
Standard type	Symmetric type	Bore size (mm)	5	10	15	20	Extension end	Retraction end	Both ends	Axial piping type
MXJ4	MXJ4L	4.5	٠	٠	_	_	•	•	•	•
MXJ6	MXJ6L	6	٠	•	٠	—	•	•	•	•
MXJ8	MXJ8L	8	•	٠	٠	٠	•	•	•	•

- Clean Specification -

Clean specification products are available with no dimensional changes. The same options are available as for standard products.


Series MXJ **Model Selection**

Procedure	Formula/Data	Selection Example	
Operating Conditions			MXH -Z
Enumerate the operating conditions considering the mounting position and workpiece configuration.	Model to be used Type of cushion Mounting orientation Average operating speed Va (mm/s) Load weight W (kg) Overhang (mm)	Cylinder: MXJ6-10 Cushion: Rubber bumper Mounting: Horizontal wall mounting Average operating speed : $Va = 100 \text{ mm/s}$ Load weight: $W = 0.1 \text{ kg}$ L2 = 40 mm L3 = 50 mm	MXS MXQ MXF MXW MXW
Load Weight			
Find the collision speed V (mm/s). Confirm that the load weight W (kg) does not exceed the value in the graph.	$V = 1.4 \cdot Va * Correction factor (Reference value)Graph (1)$	V = 1.4 x 100 = 140 Confirm that V = 140 and W = 0.1 do not exceed the values in Graph (1). Applicable because it does not exceed the value in Graph (1). y = 0.1 do not y = 0.1 do	MXI MXY MTS
Load Factor			
Load Factor of Static Moment			
Find the static moment M (N-m). Find the allowable static moment Ma (N-m). Find the load factor of the static moment.	M = W x 9.8 (Ln + An)/1000 Corrected value of moment center position distance An: Table (1) Pitch, Yaw moment: Graph (2) Roll moment: Graph (3) Ct. = M/Ma	Examine Mr. Mr = 0.1 x 9.8(40 + 3)/1000 = 0.042 A2 = 3 Obtain Mar = 0.6 from Va = 100 in Graph (3). $\alpha_{1} = 0.042/0.6 = 0.07$	
Load Factor of Dynamic Mome	ent		
Find the dynamic moment Me (N·m). Find the allowable dynamic moment Mea (N·m) from graph.	Me = 1/3 · We x 9.8 (Ln + An)/1000 mass equivalent to impact We = δ·W·V δ: Bumper coefficient Rubber stopper: 4/100 Metal stopper: 16/100 Corrected value of moment center position distance An: Table (1)	Examine Mep. Mep = 1/3 x 0.56 x 9.8 x (40+3)/1000 = 0.078 We = 4/100 x 0.1 x 140 = 0.56 A3 = 3 Obtain Meap = 1.1 from V = 140 in Graph (2). $\Omega_2 = 0.078/1.1 = 0.07$ ε	
Find the load factor of the dynamic moment.	Pitch, Yaw moment: Graph (2) Ω2 = Me/Mea	Examine Mey. 140 V mm/s $Mey = 1/3 \times 0.56 \times 9.8 \times (50+11)/1000 = 0.116$ We = 0.56 A3 = 11 Obtain Meay = 1.1 from V = 140 in Graph (2). C2' = 0.116/1.1=0.1 C2' = 0.116/1.1=0.1	
Possible to use if the sum of the load factors does not exceed 1.	0 /1 + 0 /2 < 1	0.1 + 0.2 + 0.2 = Applicable because 0.07 + 0.07 + 0.1 = 0.24 < 1	D- [
	© SMC	207	

Fig. (1) Overhang: Ln (mm), Correction Value of Moment Center Position Distance: An (mm) Pitch moment Yaw moment Roll moment My (🕂 Δ1 L2 A2 W Static moment (Ħ ۱۸/ AЗ A3 ۱۸ w Ŵ Me Mer moment We We Dvnamic

Note) Static moment: Moment generated by gravity Dynamic moment: Moment generated by impact when colliding with stopper

Graph (2) Allowable Moment Pitch Moment: Map, Meap

Note) Use the average operating speed when calculating static moment Use the collision speed when calculating dynamic moment.(refer to page 207.)

Table (1) Correction Value of Moment Center

Position Distance: An (mm)						
Model	Corrected value of moment center position distance (Refer to Fig. 2.)					
	A1	A2	A3			
MXJ4	10 3 10					
MXJ6	10 3 11					
MXJ8	12	4	13			

Table (2) Max. Allowable Load Weight: Wmax (kg)

Model	Max. allowable load weight				
woder	Rubber bumper	Metal stopper			
MXJ4	0.1	0.08			
MXJ6	0.2 0.14				
MXJ8	0.35	0.25			
The above value represents the maximum value for each					

allowable load weight. For the maximum allowable load weight for each piston speed, please refer to Graph (1).

Table (3) Maximum Allowable Moment: Mmax (N·m)

Model	Pitch/Yaw moment: Mpmax/Mymax	Roll moment: Mrmax
MXJ4	1.1	0.6
MXJ6	1.1	0.6
MXJ8	1.5	1.0

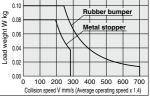
The above value represents the maximum value of allowable moment. For the maximum allowable moment for each piston speed, please refer to Graph (2) and (3),

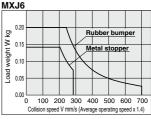
Symbol

Symbol					
Symbol	Definition	Unit	Symbol	Definition	Unit
An (n = 1 to 3)	Corrected value of moment center position distance	mm	F	Allowable static load	N
Ln (n = 1 to 3)	Overhang	mm	V	Collision speed (Average operating speed x 1.4)	mm/s
M (Mp, My, Mr)	Static moment (pitch, yaw, roll)	N∙m	Va	Average operating speed	mm/s
Ma (Map, May, Mar)	Allowable static moment (pitch, yaw, roll)	N⋅m	w	Load weight	kg
Me (Mep, Mey)	Dynamic moment (pitch, yaw)	N∙m	Wa	Mass equivalent to impact	kg
Mea (Meap, Meay)	Allowable dynamic moment (pitch, yaw)	N⋅m	Wmax	Max. allowable load weight	kg
Mmax (Mpmax, Mymax, Mrmax)	Max. allowable moment (pitch, yaw, roll)	N∙m	α	Load factor	-

SMC

Graph (3) Allowable Moment **Roll Moment: Mar** MXJ8 1 Ë Ma MXJ4,MXJ6 0.6 Allowable static moment 0.5 0.4 0.3 0.2 0.1 <u>-</u> 50 100 200 300 400 Average operating speed Va mm/s


L		,	• •		,
Table (4) A	llowat	2 01	tatic	-heo I	E (NI)
	nowar	ne o	ano	Loau.	1 (11)
Model				tatic load	


Model	Allowable static load			
MXJ4	300			
MXJ6	300			
MXJ8	500			

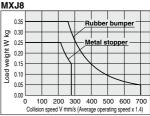
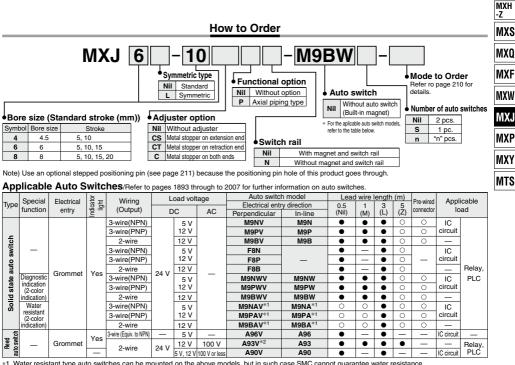

The above value represents the applicable load at the position where the moment does not work at the time of stop. Factors such as impact, etc. are not in consideration with the value

Fig. (2) Allowable Static Load: F(N)



Air Slide Table Series MXJ Ø4, Ø6, Ø8

*1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance. *2 1 m type lead wire is only applicable to D-A93.

SMC

* Lead wire length symbols: 0.5 m······· Nil

- m······ Nil (Example) M9NW
- \ast Solid state auto switches marked with "O" are produced upon receipt of order.
- 1 m······ M (Example) M9NWM 3 m····· L (Example) M9NWL
- 5 m······· Z (Example) M9NWL

* Refer to page 221 for applicable auto switches in addition to those listed above.

* For details on auto switches with a pre-wired connector, refer to page 1960 and 1961.

* Auto switches are shipped together (not assembled).

Clean Series

11 – MXJ Standard model no.

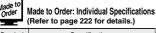
Clean Series

11: Vacuum type * External dimensions are identical to the standard model.

Model

Model	Adjuster option	Grade	Intake flow L/min (ANR)*		
11-MXJ4(L)	Without adjuster	Grade 3 (Class 100 or equivalent)			
11-MAJ4(L)	Metal stopper	Grade 4 (Class 1000 or equivalent)			
11-MXJ6(L)	Without adjuster	Grade 3 (Class 100 or equivalent)	1		
II-IVIAJO(L)	Metal stopper	Grade 4 (Class 1000 or equivalent)	1		
11-MXJ8(L)	Without adjuster	Grade 3 (Class 100 or equivalent)			
II-IVIAJO(L)	Metal stopper	Grade 4 (Class 1000 or equivalent)			
* Reference value					

lel.



209 🖲

Caution

When an auto switch is not mounted properly, it can cause a malfunction. Refer to page 221 "Auto Switch Mounting".

Symbol	Specifications	
-X39	Fluororubber seals	
-X42	Anti-corrosive guide unit	
-X45	EPDM seals	

Specifications

Model	MXJ4	MXJ6	MXJ8	
Bore size (mm)	4.5	6	8	
Piping port size		M3 x 0.5		
Fluid		Air		
Action		Double acting		
Operating pressure		0.15 to 0.7 MPa		
Proof pressure		1.05 MPa		
Ambient and fluid temperature	-10 to 60°C			
Operating speed range (Average operating speed) Note)	50 to 500 mm/s (Metal stopper: 50 to 200 mm/s)			
Cushion	Rubber bumper (Metal stopper: Without cushion)			
Lubrication		Non-lube		
Stroke adjuster	5	Standard equipmen	ıt	
Stroke adjusting range (metal stopper)	Boti	n ends each 0 to 5	mm	
Auto switch	Reed auto switch (2-wire, 3-wire) Solid state auto switch (2-wire, 3-wire) 2-color indication solid state auto switch (2-wire, 3-wire			
Stroke length tolerance	+1 mm			

Note) Average operating speed: Speed that the stroke is divided by a period of time from starting the operation to reaching the end.

Standard Stroke

Model	Standard stroke (mm)		
MXJ4	5, 10		
MXJ6	5, 10, 15		
MXJ8	5, 10, 15, 20		

Theoretical Output

Opt	ion

			Otractica a discatara anti-
Adjuster option	Metal stopper	Retraction end (CT)	Stroke adjustment range 0 to 5 mm
		Both ends (C)	
Functional option	Axial piping type (P)		Stroke adjuster is mountable on the axial piping.

										(N)
Model	Bore size	Rod size	Operating			Operating pressure (MPa)				
woder	(mm) (mm)	(mm)	direction		0.2	0.3	0.4	0.5	0.6	0.7
MY 14	MXJ4 4.5	4.5 2	OUT	16	3	5	6	8	10	11
WIAJ4		2	IN	13	3	4	5	6	8	9
MXJ6	6		OUT	28	6	8	11	14	17	20
WIAJO	6 3	IN	21	4	6	8	11	13	15	
MXJ8 8			OUT	50	10	15	20	25	30	35
IWIAJO	8	4	IN	38	8	11	15	19	23	26

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

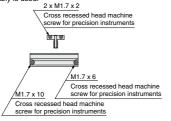
When operating an actuator with a small diameter and a short stroke at a high frequency, the dew condensation (water droplet) may occur inside the piping depending on the conditions.

Simply connecting the moisture control tube to the actuator will prevent dew condensation from occurring. For details, refer to <u>Series IDK in the</u> <u>WEB catalog</u>.

Weight

Basic Style	(Without switch r	rail) MXJ□□-□□	N			(g)	<u>,</u>
Model		Standard st	troke (mm)		Additional weight	of adjuster option	1
iviouei	5	10	15	20	Extension end	Retraction end	I I
MXJ4	40	40	—		2	6	Мхн
MXJ6	50	50	55		2	8	-Z
MXJ8	70	70	90	90	2	12	MXS
Axial Piping	Type (Without s	witch rail) MXJ□]PN			(g)	MXQ
Model		Standard st	troke (mm)		Additional weight	of adjuster option	
Woder	5	10	15	20	Extension end	Retraction end	MXF
MXJ4	50	50		<u> </u>	2	6	
MXJ6	60	60	65	<u> </u>	2	8	MXW
MXJ8	85	85	110	110	2	12	MAXI
Additional W	Veight of Switch	Rail		(g)	1		MXJ
Madal		Standard st	troke (mm)		1		MXP
Model	5	10	15	20	1		
MXJ4	5	5			1		MXY
MXJ6	5	5	6	!			MTS
MXJ8	5	5	7	7	j		IVI I S

Table Accuracy


B side parallelism to A side	0.03 mm
B side traveling parallelism to A side	0.005 mm
C side perpendicularity to A side	0.01 mm
M dimension tolerance	± 0.05 mm
Radial clearance (µm)	O Note)
Non-rotating table accuracy (deg)	O Note)

Note) In theory, radial clearance and non-rotating table accuracy are zero by the preloaded specification. However, in some actual cases, a moment can be applied and can cause deflection in an individual part. Therefore, refer to the table displacement amount on page 212.

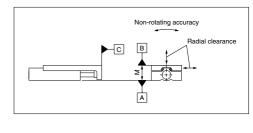
Optional Specifications

Rail assembly for mounting auto switch

When auto switch is mounted on air slide table without rail $(MXJ\Box-\Box N)$, this assembly is used.

Applicable size	Switch rail part no.	Note
MXJ4-5	MXJ-AD4-10	
MXJ4-10	MIXJ-AD4-10	
MXJ6-5	MXJ-AD6-10	
MXJ6-10	MIXJ-AD6-TU	With magnet and
MXJ6-15	MXJ-AD6-15	mounting screw
MXJ8-5	MXJ-AD6-10	, in the second s
MXJ8-10	MIXJ-AD6-TU	
MXJ8-15	MXJ-AD8-20	
MXJ8-20	WIAJ-AD0-20	

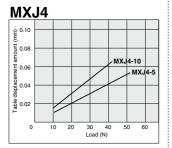
Stepped positioning pin MXJ-LP

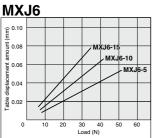


Use the optional stepped positioning pin that is provided because the positioning pin hole for the table is a through hole.

Stepped Positioning Pin

Part no.	Note
MXJ-LP	Common for all models


Table Deflection (Reference Values)


The graphs below show the table displacement when the static moment load is applied to the table. The graphs do not show the loadable weight. Refer to the Model Selection for the loadable weight.

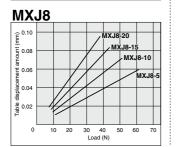
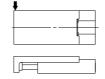
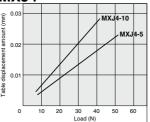
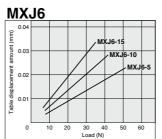
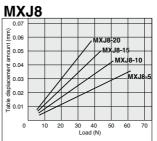

Table displacement due to pitch moment load

Table displacement when loads are applied to the section marked with the arrow at the full stroke.

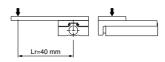





Table displacement due to yaw moment load


Table displacement when loads are applied to the section marked with the arrow at the full stroke.

MXJ4



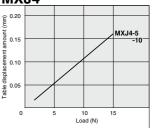
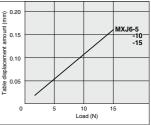
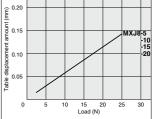
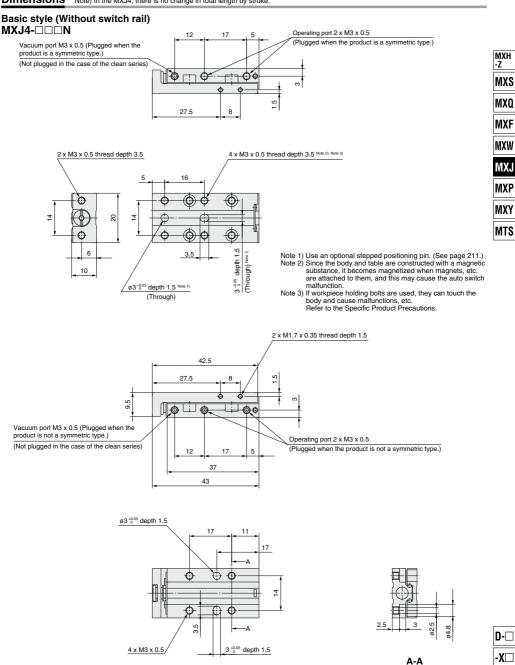


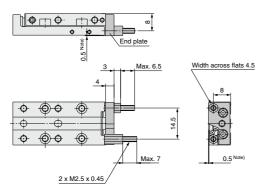
Table displacement due to roll moment load

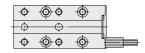

Table displacement when loads are applied to the section marked with the arrow with the slide table retracted.


MXJ4


<u>MXJ6</u>

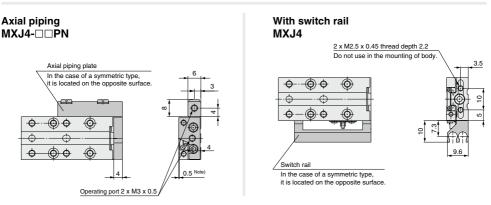
MXJ8


SMC


SMC

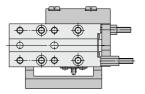
Dimensions

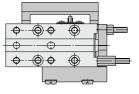
With stroke adjuster With adjuster on both ends MXJ4-□C□N


With adjuster on extension end MXJ4-□CSN

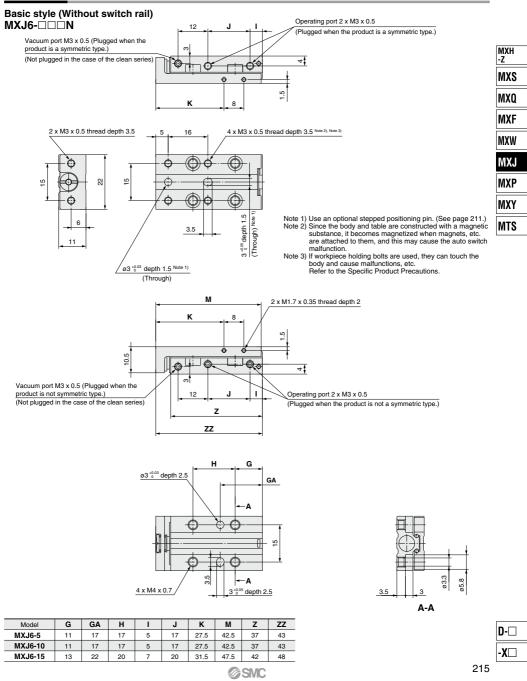
With adjuster on retraction end MXJ4-□CTN

÷	¢	Ø	
-@-			
÷	⊕¢	0	

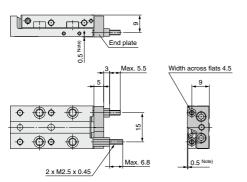

Note) Use caution because the height of the end plate's top surface will be higher than the table's top surface.


Note) Use caution because the height of the end plate's top surface will be higher than the table's top surface.

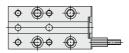
When all the available options are mounted (switch rail, stroke adjuster, with axial piping).


Standard type MXJ4-□CP

Symmetric type MXJ4L-□CP

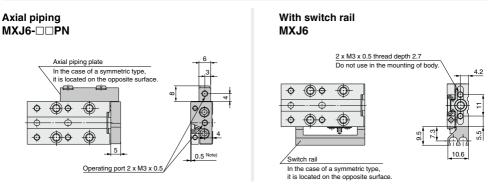


Dimensions



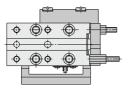
Dimensions

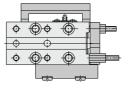
With stroke adjuster With adjuster on both ends MXJ6-□C□N


With adjuster on extension end MXJ6-□CS□N

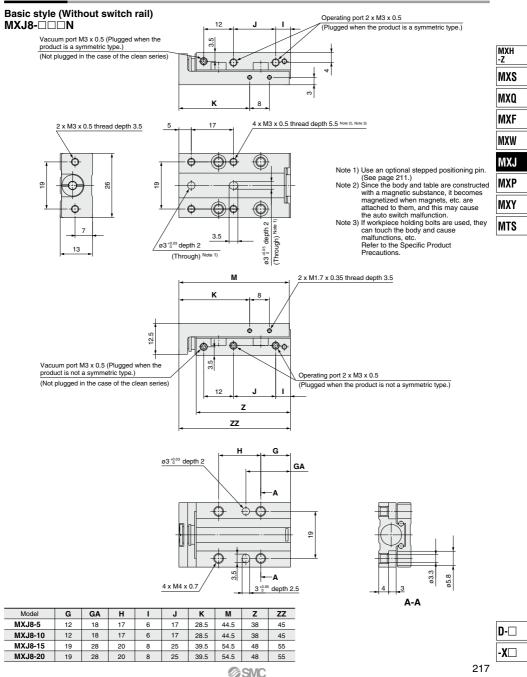
With adjuster on retraction end MXJ6-□□CTN

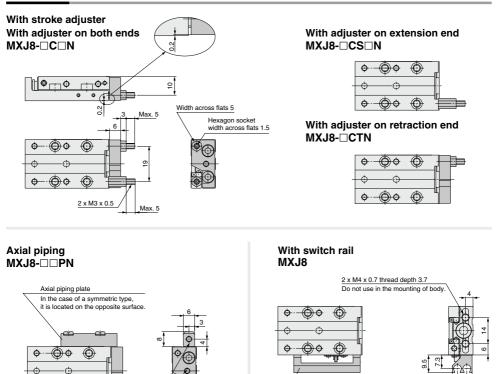
ø	Ø¢	•	┢
-\$-	Φ-		
-\$	¢	\odot	


Note) Use caution because the height of the end plate's top surface will be higher than the table's top surface.


Note) Use caution because the height of the end plate's top surface will be higher than the table's top surface.

When all the available options are mounted (switch rail, stroke adjuster, with axial piping)

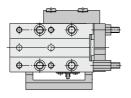

Standard type MXJ6-□CP


Symmetric type MXJ6L-□CP

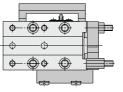
Dimensions

Dimensions

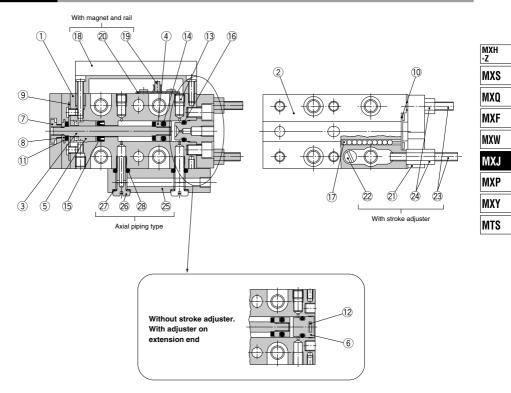
/Switch rail In the case of a symmetric type, it is located on the opposite surface. 10.6


When all the available options are mounted (switch rail, stroke adjuster, with axial piping)

Standard type MXJ8-□CP


Operating port 2 x M3 x 0.5

@@ @


÷٠

Symmetric type MXJ8L-□CP

Construction

Component Parts

200	inponent i arts		
No.	Description	Material	Note
1	Body	Note) Martensitic stainless steel	Heat treated
2	Table	Note) Martensitic stainless steel	Heat treated
3	Rod	Stainless steel	
4	Piston	Brass	Electroless nickel plated
5	Rod cover	Resin	
6	Head cap	Resin	
7	Floating bushing A	Stainless steel	
8	Floating bushing B	Stainless steel	
9	Roller stopper A	Stainless steel	
10	Roller stopper B	Stainless steel	
11	Rod bumper	Polyurethane	
12	Plate	Stainless steel	
13	Plug	Steel + Fluorine	Zinc chromated
14	Piston seal	NBR	
15	Rod seal	NBR	
16	O-ring	NBR	
17	Steel balls	High carbon chrome bearing steel	

Note) Use caution because the martensitic stainless steel is inferior in corrosiveness when compaed with austenitic stainless steel.

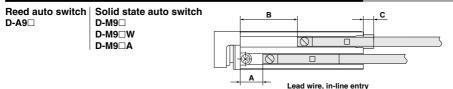
With Magnet, Rail

No.	Description	Material	Note
18	Switch rail	Aluminum alloy	Hard anodized
19	Magnet	—	
20	Magnet holder	Stainless steel	

With Stroke Adjuster

No.	Description	Material	Note			
21	End plate Stainless steel					
22	Stopper pin	Steel	Heat treated, Trivalent chromated			
23	23 Adjustment bolt Steel Heat treated Note), Zinc chromated					
24	24 Adjustment nut Steel Zinc chromated					
Note	Note) Only the MX I8 series is heat treated					

Axial Piping Type


No.	Description	Material	Note
25	Axial piping plate	Aluminum alloy	Hard anodized
26	Stud	Brass	Electroless nickel plated
27	Gasket	Stainless steel + NBR	
28	O-ring	NBR	

D-🗆

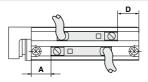
-X🗆

Series MXJ Auto Switch Mounting

Auto Switch Proper Mounting Position (Detection at Stroke End)

* Figures in the table above are used as a reference when mounting the auto switches for stroke end detection.

In the case of actually setting the auto switches, adjust them after confirming their operation.


Reed Auto Switch: D-A9

		Α				В			С			
Model		Stroke				Str	oke			Str	oke	
	5	10	15	20	5	10	15	20	5	10	15	20
MXJ4	9	4	_	-	14	14	_	-	0.5	0.5	_	-
MXJ6	9	4	3	_	14 14 18 —			0.5	0.5	-0.5	_	
MXJ8	9	4	10	5	14	14	25	25	-0.5	-0.5	0.5	0.5

Solid State Auto Switch, 2-Color Indication Solid State Auto Switch: D-M9, D-M9W, D-M9A (mm)

		Α			В			С				
Model	lel Stroke			Stroke			Stroke					
	5	10	15	20	5	10	15	20	5	10	15	20
MXJ4	13	8	-	_	18	18	-	_	4.5	4.5	-	_
MXJ6	13	8	7	_	18	18	22	_	4.5	4.5	3.5	_
MXJ8	13	8	14	9	18	18	29	29	3.5	3.5	4.5	4.5

Reed auto switch D-A9□V D-M9□V D-M9□VV D-M9□AV D-M9□AV D-F8□

Lead wire, perpendicular entry

(mm)

(mm)

(mm)

 Figures in the table above are used as a reference when mounting the auto switches for stroke end detection. In the case of actually setting the auto switches, adjust them after confirming their operation.

Reed Auto Switch: D-A9□V

			4			[)	
Model		Str	oke			Str	oke	
	5	10	15	20	5	10	15	20
MXJ4	9	4	_	_	1.5	1.5	_	_
MXJ6	9	4	3	_	1.5	1.5	2.5	_
MXJ8	9	4	10	5	2.5	2.5	1.5	1.5

Solid State Auto Switch, 2-Color Indication Solid State Auto Switch: D-M9 V, D-M9 WV, D-M9 AV (mm)

			4			[)	
Model		Str	oke		Str	oke		
	5	10	15	20	5	10	15	20
MXJ4	13	8	_	_	5.5	5.5	_	—
MXJ6	13	8	7	-	5.5	5.5	6.5	_
MXJ8	13	8	14	9	6.5	6.5	5.5	5.5

Solid State Auto Switch: D-F8

		1	4			[כ	
Model		Str	oke		Stroke			
	5	10	15	20	5	10	15	20
MXJ4	11	6	_	_	3.5	3.5	_	_
MXJ6	11	6	5	-	3.5	3.5	4.5	_
MXJ8	11	6	12	7	4.5	4.5	3.5	3.5

@SMC

Operating Range

			(mm)				
Auto switch model	Applicable bore size (mm)						
Auto switch model	ø4	ø6	ø8				
D-A9□/A9□V	4	4	4				
D-F8	2	2	2				
D-M9□/M9□V							
D-M9□W/M9□WV	2	2.5	2.5				

 Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed (assuming approximately ±30% dispersion). It may vary substantially depending on an ambient environment.

Auto Switch Mounting

▲Caution

Auto Switch Mounting Tool

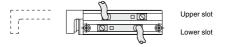
 When tightening the auto switch mounting screw (included with auto switch), use a watchmaker's screwdriver with a handle about 5 to 6 mm in diameter.

Tightening Torque

Tightening Torque of Auto Switch

(N·m)
que
)
5
5

When using the following solid state auto switches $(D-M9\Box(V), M9\BoxW(V), F8\Box)$, mount them in the illustrated direction. The lower slot is for extension end detection.


• Lead wire, in-line entry (D-M9, M9W, M9A)

Extension end Retraction end

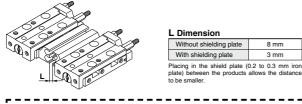
[Ø		Upper
(_	0		Lower

• Lead wire, perpendicular entry (D-M9 V, M9 WV, M9 AV, F8)

Extension end Retraction end

Caution on handling symmetric type

Auto switch


A Caution

1. Maintain a minimum space if standard type and symmetric type are used side by side.

Auto switch mounting screw (Included with auto switch)

Watchmaker's screwdriver

If the space is insufficient, it may cause auto switches to malfunction.

Other than the applicable auto switches listed in "How to Order", the following auto switches can be mounted. * Normally closed (NC = b contact) solid state auto switches (D-F9G/F9H types) and a solid state auto switch (D-F8) are also available. Refer to pages 1910 and 1911 for details.

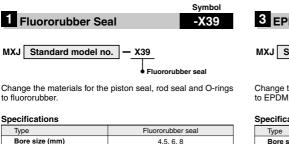
MXH -Z MXS MXQ

MXF

MXW

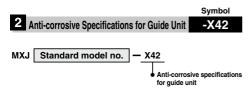
MXJ

MXP


MXY

MTS

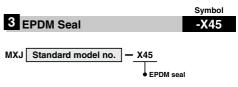
SMC


Series MXJ Made to Order: Individual Specifications

Please contact SMC for detailed dimensions, specifications, and lead times.

Seal material Fluororubber

* Dimensions other than the above is the same as the standard type.


Martensitic stainless steel is used for the table and body. Use this treatment if more effective anti-corrosive measures are necessary. Anti-corrosive treatment is applied to the table and body.

Specifications

Туре	Anti-corrosive guide unit
Bore size (mm)	4.5, 6, 8
Surface treatment	Special anti-corrosive treatment (2)

* 1 Dimensions other than the above is the same as the standard type.

* 2 The special anti-corrosive treatment turns the table and body black.

Change the materials for the piston seal, rod seal and O-rings to EPDM.

Specifications

Туре	EPDM seal
Bore size (mm)	4.5, 6, 8
Seal material	EPDM
Grease	PTFE grease

* Dimensions other than the above is the same as the standard type.

A Warning Precautions

Be aware that smoking cigarettes, etc. after your hands have come into contact with the grease used in this cylinder can create a gas that is hazardous to humans.

Series MXJ Specific Product Precautions 1

Be sure to read before handling. Refer to front matter 39 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Selection

ACaution

1. Operate loads within the range of the operating limits.

Select the model considering maximum loading weight and allowable moment. For details, refer to "Model Selection" on pages 207 and 208. When actuator is used outside of operating limits, eccentric loads on guide will be in excess of this causing vibration on guide, inaccuracy, and shortened life.

2. If intermediate stops by external stopper is done, avoid ejection.

If lurching occurs, damage can result. When making an inermediate stop with an external stopper to be followed by continued forward movement, first supply pressure to momentarily reverse the table, then retract the intermediate stopper, and finally apply pressure to the opposite port to operate the table again.

3. Do not use it in such a way that excessive external force or impact force could work on it.

This could result in damage.

Mounting

A Caution

1. Do not scratch or dent on the mounting side of body, table and end plate.

The damage will result in a decrease in parallelism, vibration of guide and an increase in moving part resistance.

 Do not scratch or dent on the forward side of the rail or guide. This could result in looseness and increased operating resistance, etc.

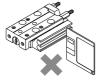
Mounting

A Caution

3. Do not apply excessive power and load when work is mounted. If the external force more than the allowable moment were applied, looseness of the guide unit or

take place. 4. Flatness of mounting surface should be 0.02 mm or less.

increased operating resistance could

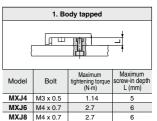

Poor parallelism of the workpiece mounted on the body, the base, and other parts can cause vibration in the guide unit and increased operating resistance, etc.

- Select the proper connection with the load which has external support and/or guide mechanism on the outside, and align it properly.
- 6. Avoid contact with the body during operation.

Hands, etc. may get caught in the stroke adjuster. Install a cover as a safety measure if there are instances to be near the slide table during operation.

7. Keep away from objects which are influenced by magnets.

Since a body has magnets built-in, do not allow close contact with magnetic disks, magnetic cards or magnetic tapes. Data may be erased.


8. Do not attach magnets to the body and table section.

Since the body and table are constructed with a magnetic substance, it becomes magnetized when magnets, etc.

are attached to them, and this may cause malfunction of auto switches, etc.

9. When mounting the body, use appropriate length of screws and do no exceed the maximum tightening torque.

Tightening with a torque above the limit could malfunction. Whereas tightening insufficiently could result in misalignment or come to a drop.

10. Use the below speed controllers and fittings.

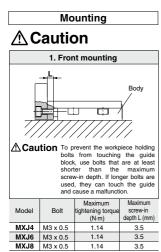
If other speed controllers and fittings are used, they can interfere with the mounting surface.

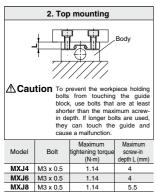
Model	Side piping port	Axial piping port	Vacuum port
MXJ4	AS1200-M3	AS1200-M3	
MXJ6	AS1200-M3	-M3 AS1201E-M3	
MXJ8	AS1201F-M3 AS1301F-M3	AS1301F-M3	

MXS MXQ MXF MXW MXJ MXP MXY

MTS

MXH


-Z


D-□ -X□

Series MXJ Specific Product Precautions 2

Be sure to read before handling. Refer to front matter 39 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

1. Use a stepped positioning pin that is provided optionally because the positioning pin hole for the table is through.

(Refer to page 211.)

Operating Environment

A Caution

 Do not use in an environment, where the product could be exposed to liquids such as cutting oil, etc.

Using in an environment where the product could be exposed to cutting oil, coolant, oil, etc. could result in looseness, increased operating resistance, air leakage, etc.

 Do not use in an environment, where the product could be exposed directly to foreign materials such as powder dust, blown dust, cutting chips, spatter, etc.

This could result in looseness, increased operating resistance, air leakage, etc.

Contact us regarding use in this kind of environment.

- 3. Do not use in direct sunlight.
- When there are heat sources in the surrounding area, block off them off.

When there are heat sources in the surrounding area, radiated heat may cause the product's temperature to rise and exceed the operating temperature range. Block off the heat with a cover, etc.

Do not subject it to excessive vibration and/or impact.

Contact us regarding use in this kind of environment, since this can cause damage or a malfunction.

6. Be careful about the corrosion resistance of the linear guide.

Be careful that the body and table use martensitic stainless steel, which is inerior to austenitic stainless steel in terms of corrosion resistance. Rust may result especially in an environment that allows water drops from condensation to stay on the surface.

Caution on Adjuster Option

Stroke Adjuster

A Caution

 Refer to the below table for lock nut tightening torque.

Insufficient torque will cause a decrease in the positioning accuracy.

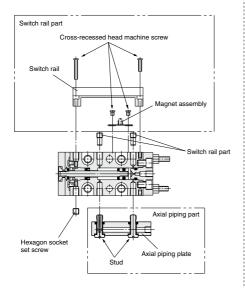
Model	Thread size	Tightening torque (N·m)	
MXJ4	M2.5 x 0.45	0.36	
MXJ6	M2.5 x 0.45	0.36	
MXJ8	M3 x 0.5	0.63	

2. When sroke adjuster is adjusted, do not hit the table with a wrench, etc.

This could result in looseness.

Series MXJ Specific Product Precautions 3

Be sure to read before handling. Refer to front matter 39 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.


Caution on replacing standard type to symmetric type, and vice versa

ACaution

Switch rail, axial piping plate and port location can be changed symmetrically. In the event of replacing them, secure with the tightening torque below.

Thread	Thread size	Tightening torque (N·m)
Cross-recessed head machine screw	M1.7 x 0.35	0.1
Stud	M3 x 0.5	0.3
Dedicated plug	M3 x 0.5	0.3
Hexagon socket set screw	M3 x 0.5	0.3

* No need to applying sealant to the dedicated plug, and stud when exchanging.

MXH -Z
MXS
MXQ
MXF
MXW
MXJ
MXP
MXY
MTS

