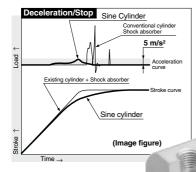

Sine Cylinder

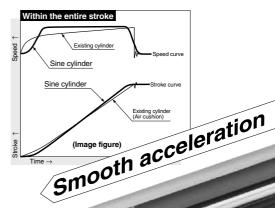
Series **REC**

Ø**20**, Ø**25**, Ø**32**, Ø**40**

Allows high speed transfer of work with dramatically reduced shock/impact.

D-□ -X□


1143


Sine Cylinder

Series REC Allows rapid transfer of work

Ø20,Ø25,Ø32,Ø40

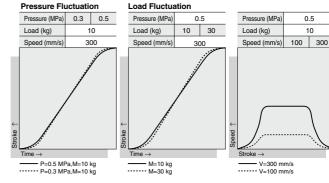
Motion comparison with the one with shock absorber

Space-saving has been realized by simple circuit

Sine Cylinder Comparison to Shockless Transfer Systems Cushioning keep up with depth of Conventional System which change depend on stroke Speed control by a flow control valve which can variable throttle flo Multistage speed control by combining speed controllers Control according to indicated current. Symbol System ZIII V Same start up as Acceleration Smooth operation w controlled start function Smooth operation without sudden speed changes Deceleration Smooth operation Construction Smooth operation without sudden speed changes

Compatible with Clean Room Class M3.5 (Fed.Std.209E). (Refer to page 1151.)

This model conforming to the clean room specification removes dust generated inside with an exhaust from the relief port or vacuum sweeping.


with dramatically reduced shock/impact.

Reducing actuation cycle time

Max. 500 mm/s of high speed transfer is possible. Cycle time can be drastically reduced compared with existing low speed cylinder (10 to 30 mm/s).

Reference Example) Motion on RECL32-300

⚠ Caution

Recommended Speed Controllers

HECOI	illilellaea Speed	Controllers	
MI-I		Model	
Model	Elbow type	Straight type	In-line type
REC20	AS2201F-01-06-X214	AS2301F-01-06-X214	AS2001F-06-X214
REC25	AS2201F-01-06-X214	AS2301F-01-06-X214	AS2001F-06-X214
REC32	AS2201F-01-06-X214	AS2301F-01-06-X214	AS3001F-08-X214
REC40	AS3201F-02-08-X214	AS3301F-02-08-X214	AS3001F-08-X214

△ Caution

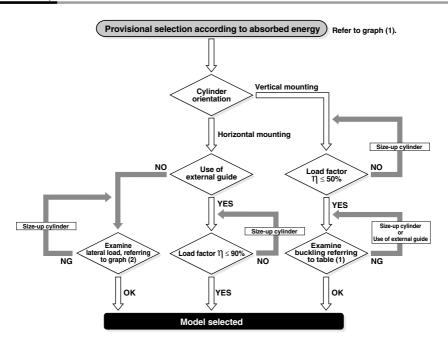
Use the recommended speed controllers. (Refer to page 1161.)

D-□ -x□

REA

REB
REC
C
Y

MQ


RHC

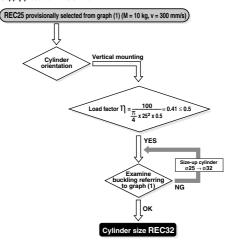
RZQ

Series REC Model Selection

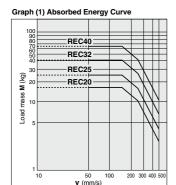
Selection Step

Selection Example 1

Actuating orientation:
Horizontal transfer of work
(without external guide)
Maximum speed: v = 200 mm/s
Supply pressure: P = 0.5 MPa

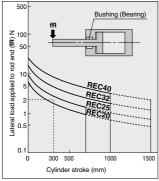

Load mass: M = 0.2 kg (2N) Cylinder stroke: 300 mm

REC20 provisionally selected from graph (1) (M = 0.2 kg, v = 200 mm/s) Cylinder orientation NO Use of external guide Size-up cylinder load, referring to graph (2) OK Cylinder size REC25


Selection Example 2

Actuating orientation:
Vertical transfer of work
(Rod side flange)
Maximum speed: v = 300 mm/s
Supply pressure: P = 0.5 MPa

Load mass: M = 10 kg Cylinder stroke: 400 mm



Model Selection Series REC

(Initial cushioning speed)

Graph (2) Applicable Max. Stroke Against Lateral Load*

^{*} The above curve in the graph refers to P = 0.5 MPa of supply pressure. If supply pressure is other than P = 0.5 MPa, please figure out a max. stroke, using proportional calculation.

calculation. Example) If P = 0.6 MPa, a max. stroke = the respective stroke in the graph x $\frac{0.6}{0.5}$

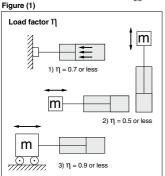


Table (1) Relation between Cylinder Size and Max. Stroke

Mounting style

Applicable max. stroke

(cm)

		,		Operating	Applicable max. stroke according to buckling strength						
Foot style: L flange style: F flange style: C, D flange style: L flange style: F flange style: F flange style: L flange style: F flange style:	mbol	Symbol	pressure (MPa)		RI	EC					
	g				ø 20	ø 25	ø 32	ø 40			
Foot style: L		Head side		0.3	39	50	56	61			
[W]	[W]		L F	0.5	30	38	43	47			
				0.7	24	31	36	39			
				0.3	11	17	19	21			
			G	0.5	7	11	13	13			
		muumm		0.7	4	7	9	9			
Clevis style: C, D				0.3	32	42	48	52			
,	,	,	C	0.5	22	30	35	37			
_	<u></u>	<u></u>		0.7	17	24	27	29			
S.	30	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.3	82	103	116	127			
			U	0.5	62	79	89	97			
		l (A	0.7	52	66	75	81				
		🕌		0.3	33	43	49	53			
ummu.		nhum.	т	0.5	23	31	36	39			
				0.7	18	25	29	31			
Foot style: L		Head side flange style: G		0.3	118	148	167	182			
W	26—16	Ormali.	L F	0.5	90	114	128	140			
				0.7	76	95	108	117			
				0.3	51	66	75	81			
			G	0.5	37	49	55	60			
		-mannan		0.7	30	39	45	49			
Foot style: L		Head side flange style: G		0.3	168	211	237	259			
W.	w	w l	L F	0.5	129	162	183	199			
		l İİ.		0.7	109	136	154	168			
				0.3	76	97	110	119			
	П		G	0.5	56	73	83	90			
		www.		0.7	46	60	68	74			

2) In the case where cylinder is used for dynamic action: Load factor η = 0.5 or less 3) In the case where guide is used in horizontal orientation: Load factor η = 0.9 or less

1) In the case where cylinder is used for static action: Load factor η = 0.7 or less

D-□ -X□

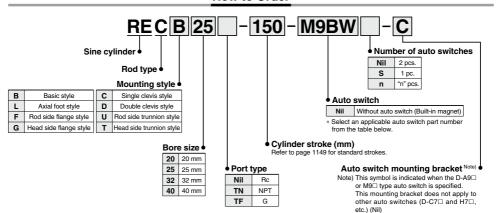
REA REB

REC

|C□Y

|C□X

MQ


RHC

RZQ

Sine Cylinder Series REC Ø20, Ø25, Ø32, Ø40

How to Order

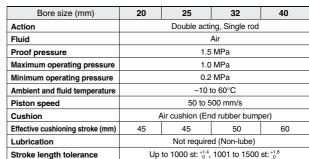
Applicable Auto Switches/Refer to pages 1893 to 2007 for further information on auto switches.

	Special	Clastrical	ght	Wiring	Lo	ad volta	ge	Auto swit	ch model	Lead	d wir	e lengtl		(m)	D	Anni	icable	
Type	function	Electrical entry	Indicator	(Output)	DC		AC	Perpendicular	In-line	0.5 (Nil)	1 (M)	3 (L)		None (N)	Pre-wired connector		ad	
				3-wire (NPN)				M9NV	M9N	•	•	•	0	—	0			
				3-wire (INPIN)		5 1/ 40 1/		_	_	•	1-	•	0	 —	0	IC circuit		
		Grommet		3-wire (PNP)		5 V, 12 V		M9PV	M9P	•	•	•	0	I-	0	IC CIICUII		
	_	Gionnie		3-WILE (FINE)				_	_	•	1-	•	0	I-	0	1		
ڃ								M9BV	M9B	•	•	•	0	I-	0]	
switch				2-wire		12 V		_	_	•	1-	•	0	-	0	1 —		
S		Connector						1	ı	H7C	•	<u> </u>	•	•	•	_		
2				3-wire (NPN)				M9NWV	M9NW	•	•	•	0	-	0			
ā	Diagnostic indication (2-color indication)		Yes		24 V	5 V, 12 V	_	I	_	•	-	•	0	 -	0	IC circuit	Relay	
9			103	3-wire (PNP)	24 V	5 V, 12 V	_	M9PWV	M9PW	•	•	•	0	 -	0	IO CIICUII	PLC	
草				3-WIIE (I IVI)				I	_	•	-	•	0	 -	0			
ő	indication)			2-wire		12 V		M9BWV	M9BW	•	•	•	0	 -	0			
등		Grommet				12 V		I	_	•	-	•	0	 -	0			
S				3-wire (NPN)	ı	5 V, 12 V		M9NAV*1	M9NA*1	0	0		0	<u> </u>	0	IC circuit		
	Water resistant			3-wire (PNP)		5 V, 12 V		1	M9PAV*1	M9PA*1	0	0		0	 —	0	IO CIICUII	
	(2-color indication)			2-wire		12 V		M9BAV*1	M9BA*1	0	0		0	<u> </u>	0			
											I	0 - 0 0 -		<u> </u>	0			
	With diagnostic output (2-color indication)			4-wire (NPN)		5 V, 12 V		I	H7NF	•	-		0	<u> </u>	0	IC circuit		
<u>_</u>			Yes	3-wire (NPN equivalent)	_	5 V	_	A96V	A96	•	-		_	<u> </u>	_	IC circuit	_	
switch							100 V	A93V*2	A93	•	•		•	<u> </u>	_	_		
8		Grommet	No				100 V or less	A90V	A90	•	-		_	<u> </u>	_	IC circuit		
2	_		Yes			12 V	100 V, 200 V	_	B54	•	1-	•	•	<u> -</u>	_		Relay	
anto			No	2-wire	24 V	12 V	200 V or less	_	B64	•	1-	•	_	<u> -</u>	_	_	PLC	
ō		Connector	Yes					_	C73C	•	1-	•	•	•	_			
Reed		COMMEDICA	No			24 V o		_	C80C	•	1-	•	•	•	_	IC circuit	1	
ш	Diagnostic indication (2-color indication)	Grommet	Yes			_	-	_	B59W	•	1-		_	I-	_	-		

^{*1} Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance. A water-resistant type cylinder is recommended for use in an environment which requires water resistance. However, please contact SMC for water-resistant products of ø20 and ø25

*2 1 m type lead wire is only applicable to D-A93

* Lead wire length symbols: 0.5 m Nil (Example) M9NW * Solid state auto switches marked with "O" are produced upon receipt of order. 1 m M (Example) M9NWM 3 m L (Example) M9NWL (Example) M9NWZ 5 m..... 7 (Example) H7CN None N


^{*} Since there are other applicable auto switches than listed, refer to page 1160 for details.

^{*} For details about auto switches with pre-wired connector, refer to pages 1960 and 1961.

* D-A9□(V)/M9□(V)/M9□W(V), M9□A(V) auto switches are shipped together (not assembled). (Only auto switch mounting brackets are assembled before shipped.)

Sine Cylinder Series REC

Standard Specifications

Standard Stroke

Symbol

Air cushion

Bore size (mm)	Minimum stroke ⁽¹⁾ (Recommended)	Standard stroke ⁽²⁾ (mm)	Maximum manufacturable stroke (mm)
20	150	Up to 700	
25	150	Up to 700	1500
32	150	Up to 1000	1500
40	200	Up to 1000	

Note 1) The recommended minimum strokes or shorter lengths are available. However, since the effective cushion stroke is longer, the cushion performance may differ from the standard

Note 2) When exceeding the standard strokes, it will be out of warranty.

Weight

					(kg
	Bore size (mm)	20	25	32	40
	Basic style	0.32	0.47	0.74	1.25
	Axial foot style	0.47	0.63	0.90	1.52
Basic	Flange style	0.38	0.56	0.83	1.37
Weight	Single clevis style	0.36	0.51	0.78	1.34
	Double clevis style	0.37	0.53	0.79	1.38
	Trunnion style	0.36	0.54	0.81	1.35
Additional	weight per each 50 mm of stroke	0.05	0.07	0.09	0.13
	Pivot bracket for clevis (With pin)	0.07	0.07	0.14	0.14
Mounting bracket	Single knuckle joint	0.06	0.06	0.06	0.23
Diaoket	Double knuckle joint (With pin)	0.07	0.07	0.07	0.20

* Calculation: (Example) RECL32-200 Basic weight 0.90 (Foot style ø32) Additional weight 0.09/50 st

Mounting Bracket Part No.

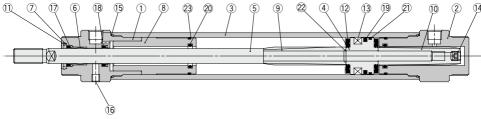
	Minimum	В	ore siz	e (mm	1)	Description (when ordering
Mounting bracket	order	20	20 25 32 4		40	a minimum number)
Axial foot *	2	CM-L020B	CM-L	.032B	CM-L040B	Foot 2 pcs., Mounting nut 1 pc.
Flange	1	CM-F020B	CM-F	032B	CM-F040B	Flange 1 pc.
Single clevis**	1	CM-C020B	CM-C	032B	CM-C040B	Single clevis 1 pc., Liner 3 pcs.
Double ** clevis (With pin)***	1	CM-D020B	CM-E	032B	CM-D040B	Double clevis 1 pc., Liner 3 pcs., Clevis pin 1 pc., Retaining ring 2 pcs.
Trunnion (With nut)			CM-T	032B	CM-T040B	Trunnion 1 pc., Trunnion nut 1 pc.

^{*} When ordering foot bracket, order 2 pieces per cylinder.

REA REB REC |C□Y C \square X

MQ

RHC


RZQ

D-

-X□

^{** 3} liners are included in the clevis bracket for adjusting an angle when mounting it. *** Clevis pin and retaining ring (cotter pin for ø40) are packaged together.

Construction

Component Parts

	ponent i arts			
No.	Description	Material	Qty.	Note
1	Rod cover	Aluminum alloy	1	Clear anodized
2	Head cover	Aluminum alloy	1	Clear anodized
3	Cylinder tube	Aluminum alloy	1	Hard anodized
4	Piston	Aluminum alloy	1	Chromated
5	Piston rod	Stainless steel	1	Hard chrome plated
6	Bushing	Bearing alloy	1	
7	Seal retainer	Stainless steel	1	
8	Cushion seal holder	Aluminum alloy	1	Chromated
9	Cushion ring A	Brass	1	Electroless nickel plated
10	Cushion ring B	Brass	1	Electroless nickel plated
11	Retaining ring	Carbon steel	1	Phosphate coated
12	Bumper	Urethane	2	
13	Magnet	_	1	
14	Hexagon socket head set screw	Carbon steel	1	Zinc chromated
15	Cylinder tube gasket	NBR	2	
16	Hexagon socket head set screw	Carbon steel	1	Zinc chromated

Component Parts

No.	Description	Material	Qty.	Note
17	Rod seal A	NBR	1	
18	Rod seal B	NBR	1	
19	Piston seal	NBR	1	
20	Cushion seal	NBR	2	
21	Wear ring	Resin	1	
22	Piston gasket	NBR	1	
23	Holder gasket	NBR	2	

Replacement Parts/Seal Kit

Bore size (mm)	Kit no.	Contents
20	REC20-PS	
25	REC25-PS	Set of nos. above
32	REC32-PS	15, 17, 19, 20, 21, 23
40	REC40-PS	

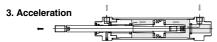
* Seal kit includes a grease pack (10 g).

Order with the following part number when only the grease pack is needed. Grease pack part no.: GR-S-010 (10 g)

When disassembling cylinders with bore sizes of ø20 to ø40, grip the double flat part of either the tube cover or the rod cover with a vise and loosen the other side with a wrench or an adjustable angle wrench, and then remove the cover. When re-tightening, tighten approximately 2 degrees more than the original position.

Working Principle

1. Start-up



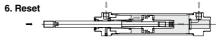
Actuating air passes from cylinder port on head side and enters the right hand side of chamber of the cylinder from space between cushion seal and U-shaped groove on the outer surface of cushion spear. Air in the left hand side of chamber of the cylinder passes through space between cushion seal and piston rod, and is released to the cylinder port on rod side.

2. In-rush/acceleration

Differential pressure (theoretical force) generated on the left and right sides of piston becomes larger than starting resistance, and piston starts to actuate. With the actuation, U-shaped groove on the cushion spear outer surface gradually becomes deeper, air flow necessary for piston emiters the right hand side of chamber of the cylinder, and piston accelerates. This acceleration process can be achieved smoothly (as a sine function) by using a cushion spear on which a U-shaped groove is machined.

When piston starts to actuate, air can go in and out freely because cushion spear on head side is released from cushion seal. With this actuation, piston speed accelerates (or maintains the same speed).

4. Deceleration


When cushion spear on rod side meets cushion seal, air in cushion chamber on rod side flows through space between cushion spear groove and cushion seal

Since the space is reduced as a sine function, the cylinder rod decelerates smoothly.

5. Stop

The piston stops at the stroke end on rod side with smooth cushioning. Air flow which is switched by solenoid valve is reversed from the one indicated in the above "1. Start-up".

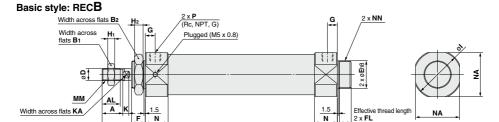
Actuating air passes from cylinder port on rod side and enters the left chamber of the cylinder from space between cushion seal and U-shaped groove on the outer surface of cushion spear.

Also, air in right hand side of chamber of piston is exhausted from cylinder port. As U-shaped groove on the cushion spear outer surface gradually becomes deeper, the cylinder accelerates.

Sine Cylinder Series REC

Clean Series

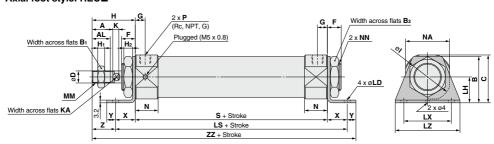
The type which is applicable for using inside the clean room graded Class M 3.5 by making an actuator's rod section a double seal construction and discharging by relief port directly to the outside of clean room.


The plug (M5 x 0.8) in the standard dimensions becomes a relief port.

Specifications

Action	Double acting, Single rod
Bore size	ø20, ø25, ø32, ø40
Maximum operating pressure	1.0 MPa
Minimum operating pressure	0.2 MPa
Cushion	Air cushion
Relief port size	M5 x 0.8
Piston speed	50 to 400 mm/s
Mounting	Basic style, Axial foot style, Rod side flange style Head side flange style

^{*} Auto switch can be mounted.


Dimensions

S + Stroke

																						(mm)
Bore (mm)	Α	AL	B ₁	B ₂	D	E	F	FL	G	Н	H ₁	H ₂	1	K	KA	MM	N	NA	NN	Р	S	ZZ
20	18	15.5	13	26	8	20 .0.033	13	10.5	10	41	5	8	33.5	5	6	M8 x 1.25	20	30	M20 x 1.5	1/8	146	200
25	22	19.5	17	32	10	26 .0.033	13	10.5	10	45	6	8	37.5	5.5	8	M10 x 1.25	20	34.5	M26 x 1.5	1/8	146	204
32	22	19.5	17	32	12	26 .0.033	13	10.5	11	45	6	8	46.5	5.5	10	M10 x 1.25	22	42.5	M26 x 1.5	1/8	159	217
40	24	21	22	41	14	32 .0.039	16	13.5	12.5	50	8	10	56	7	12	M14 x 1.5	26.5	51	M32 x 2	1/4	181	247

Axial foot style: RECL

																							(mm)
Bore (mm)	Α	AL	В	B ₁	B ₂	С	D	F	G	Н	H ₁	H ₂	1	K	KA	LD	LH	LS	LX	LZ	ММ	N	NA
20	18	15.5	40	13	26	40	8	13	10	41	5	8	33.5	5	6	6.8	25	186	40	55	M8 x 1.25	20	30
25	22	19.5	47	17	32	45.5	10	13	10	45	6	8	37.5	5.5	8	6.8	28	186	40	55	M10 x 1.25	20	34.5
32	22	19.5	47	17	32	49.5	12	13	11	45	6	8	46.5	5.5	10	6.8	28	199	40	55	M10 x 1.25	22	42.5
40	24	21	54	22	41	55.5	14	16	12.5	50	8	10	56.2	7	12	7	30	227	55	75	M14 x 1.5	26.5	51

Bore (mm)	NN	Р	s	Х	Υ	Z	ZZ
20	M20 x 1.5	1/8	146	20	8	21	215
25	M26 x 1.5	1/8	146	20	8	25	219
32	M26 x 1.5	1/8	159	20	8	25	232
40	M32 x 2	1/4	181	23	10	27	264

^{*} Bracket is shipped together with the product.

D-□ -X□

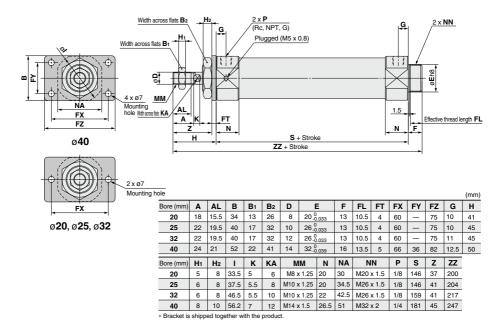
REA

REB

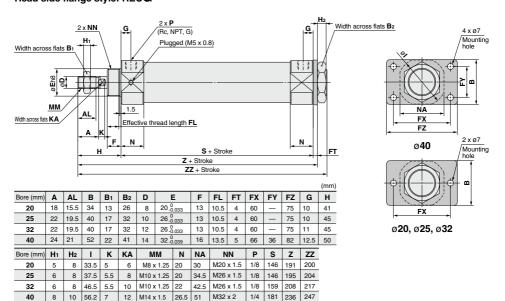
REC

C□Y C□X

MQ

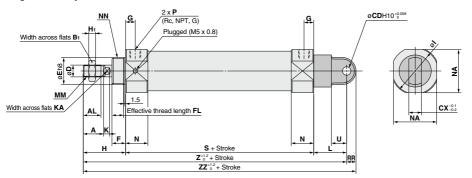

RHC

RZQ



Dimensions

Rod side flange style: RECF


Head side flange style: RECG

^{*} Bracket is shipped together with the product

Dimensions

Single clevis style: RECC

																		(mm)
Bore (mm)	Α	AL	B ₁	CD	СХ	D	E	F	FL	G	Н	H ₁	ı	K	KA	L	MM	N
20	18	15.5	13	9	10	8	20_0.033	13	10.5	10	41	5	33.5	5	6	30	M8 x 1.25	20
25	22	19.5	17	9	10	10	26_0.033	13	10.5	10	45	6	37.5	5.5	8	30	M10 x 1.25	20
32	22	19.5	17	9	10	12	26_0.033	13	10.5	11	45	6	46.5	5.5	10	30	M10 x 1.25	22
40	24	21	22	10	15	14	32_0.039	16	13.5	12.5	50	8	56.2	7	12	39	M14 x 1.5	26.5

Bore (mm)	NA	NN	Р	RR	S	U	Z	ZZ
20	30	M20 x 1.5	1/8	9	146	14	217	226
25	34.5	M26 x 1.5	1/8	9	146	14	221	230
32	42.5	M26 x 1.5	1/8	9	159	14	234	243
40	51	M32 x 2	1/4	11	181	18	270	281

Double clevis style: RECD

																		(mm)
Bore (mm)	Α	AL	B ₁	CD	СХ	cz	D	E	F	FL	G	Н	H ₁	- 1	K	KA	L	MM
20	18	15.5	13	9	10	19	8	20_0.033	13	10.5	10	41	5	33.5	5	6	30	M8 x 1.25
25	22	19.5	17	9	10	19	10	26_0.033	13	10.5	10	45	6	37.5	5.5	8	30	M10 x 1.25
32	22	19.5	17	9	10	19	12	26 0 0	13	10.5	11	45	6	46.5	5.5	10	30	M10 x 1.25
40	24	21	22	10	15	30	14	32_0.039	16	13.5	12.5	50	8	56.2	7	12	39	M14 x 1.5

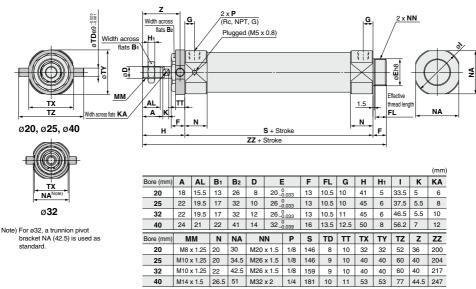
Bore (mm)	N	NA	NN	P	KK	5	U		22
20	20	30	M20 x 1.5	1/8	9	146	14	217	226
25	20	34.5	M26 x 1.5	1/8	9	146	14	221	230
32	22	42.5	M26 x 1.5	1/8	9	159	14	234	243
40	26.5	51	M32 x 2	1/4	11	181	18	270	281

D-□

1153

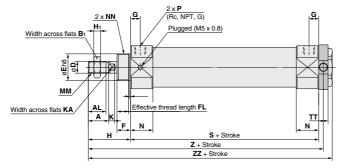
REA REB

REC

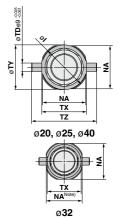

C□Y C□X

MQ

RHC RZQ


Dimensions

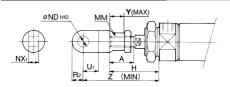
Rod side trunnion style: RECU



^{*} Bracket is shipped together with the product.

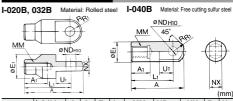
Head side trunnion style: RECT

															(mm)
Bore (mm)	Α	AL	B ₁	D	E	•	F	FL	G	Н	H ₁	ı	K	KA	MM
20	18	15.5	13	8	20_	0 0.033	13	10.5	10	41	5	33.5	5	6	M8 x 1.25
25	22	19.5	17	10	26_		13	10.5	10	45	6	37.5	5.5	8	M10 x 1.25
32	22	19.5	17	12		0 0.033	13	10.5	11	45	6	46.5	5.5	10	M10 x 1.25
40	24	21	22	14	32_		16	13.5	12.5	50	8	56.2	7	12	M14 x 1.5
Bore (mm)	N	NA	N	N	Р	s	TD	TT	TX	TY	TZ	Z	ZZ		
20	20	30	M20	x 1.5	1/8	146	8	10	32	32	52	192	202		
25	20	34.5	M26	x 1.5	1/8	146	9	10	40	40	60	196	206		
32	22	42.5	M26	x 1.5	1/8	159	9	10	40	40	60	209	219		
40	26.5	51	M32	x 2	1/4	181	10	11	53	53	77	236.5	247		
. Deceleration	a la la ca	4	Ale and an	tale ale e	a an alcon										

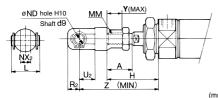


Note) For ø32, a trunnion pivot bracket NA (42.5) is used as standard

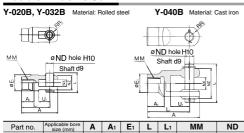
^{*} Bracket is shipped together with the product.


Series REC **Accessory Dimensions 1**

Single Knuckle Joint Mounting

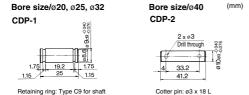

Bore (mm)	Α	Н	MM	ND _{H10}	NX ₁	U₁	R ₂	Υ	Z
20	18	41	M8 x 1.25	9 +0.058	9 -0.1	14	10	11	66
25, 32	22	45	M10 x 1.25	9 +0.058	9 -0.1	14	10	14	69
40	24	50	M14 x 1.5	12 +0.070	16 -0.1	20	14	13	92

Single Knuckle Joint

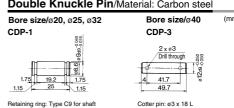

			-1							(mm)
Part no.	Applicable bore size (mm)	Α	A ₁	Εı	Lı	MM	ND _{H10}	NX	Rı	U₁
I-020B	20	46	16	20	36	M8 x 1.25	9 +0.058	9 -0.1	10	14
I-032B	25, 32	48	18	20	38	M10 x 1.25	9 +0.058	9 -0.1	10	14
I-040B	40	69	22	24	55	M14 x 1.5	12 +0.070	16 -0.1	15.5	20

Double Knuckle Joint Mounting

										, ,
Bore (mm)	Α	Н	L	MM	ND	NX ₂	R2	U ₂	Υ	Z
20	18	41	25	M8 x 1.25	9	9 +0.2	10	14	11	66
25, 32	22	45	25	M10 x 1.25	9	9 +0.2	10	14	14	69
40	24	50	49.7	M14 x 1.5	12	16 +0.3	13	25	13	92


Double Knuckle Joint

Part no.	Applicable bore size (mm)	Α	A 1	E ₁	L	L ₁	MM	ND	NX	NZ	R₁	U₁	Applicable pin part no.	Retaining ring Size
Y-020B	20	46	16	20	25	36	M8 x 1.25	9	9 +0.2	18	5	14	CDP-1	Type C9 for shaft
Y-032B	25, 32	48	18	20	25	38	M10 x 1.25	9	9 +0.2	18	5	14	CDP-1	Type C9 for shaft
Y-040B	40	68	22	24	49.7	55	M14 x 1.5	12	16 +0.3	38	13	25	CDP-3	ø3 x 18 L


* Knuckle pins and retaining rings (cotter pins for ø40) are included.

Double Clevis Pin/Material: Carbon steel

^{*} Retaining rings (cotter pins for ø40) are included

Double Knuckle Pin/Material: Carbon steel

Retaining rings (cotter pins for ø40) are included.

REA REB

REC

|C□Y |C□X MQ

RHC

RZQ

D-□

-X□

Accessory Dimensions 2

Material: Carbon steel

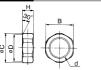
Material: Carbon steel

(mm)

Rod End Nut

						(mm)
Part no.	Applicable bore size (mm)	В	С	D	d	Н
NT-02	20	13	15.0	12.5	M8 x 1.25	5
NT-03	25, 32	17	19.6	16.5	M10 x 1.25	6
NT-04	40	22	25.4	21.0	M14 x 1.5	8

Mounting Nut


Material: Carbon steel

						(111111)
Part no.	Applicable bore size (mm)	В	С	D	d	Н
SN-020B	20	26	30	25.5	M20 x 1.5	8
SN-032B	25, 32	32	37	31.5	M26 x 1.5	8
SN-040B	40	41	47.3	40.5	M32 x 2.0	10

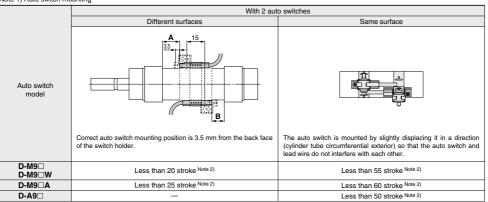
Trunnion Nut

						·····/
Part no.	Applicable bore size (mm)	В	С	D	d	Н
TN-020B	20	26	28	25.5	M20 x 1.5	10
TN-032B	25, 32	32	34	31.5	M26 x 1.5	10
TN-040B	40	41	45	40.5	M32 x 2	10

Refer to page 2048 (CM2-XB12: External stainless steel cylinder) for stainless steel mounting brackets and accessories (some are not applicable.).

* Same mounting brackets and accessories are used as Series CM2 (Best Pneumatics No. 2).

Series REC Auto Switch Mounting 1


Minimum Stroke for Auto Switch Mounting

n: No. of auto switches (mm)

		I	No. of auto switches mounted					
Auto switch model	1	:	2	1	ı			
model	•	Different surfaces	Same surface	Different surfaces	Same surface			
D-M9□	5	15 Note 1)	40 Note 1)	$20 + 35 \frac{(n-2)}{2}$ (n = 2, 4, 6) Note 3)	55 + 35 (n – 2) (n = 2, 3, 4, 5···)			
D-M9□W	10	15 Note 1)	40 Note 1)	$20 + 35 \frac{(n-2)}{2}$ $(n = 2, 4, 6)^{\text{Note 3}}$	55 + 35 (n - 2) (n = 2, 3, 4, 5···)			
D-M9□A	10	25	40 Note 1)	$25 + 35 \frac{(n-2)}{2}$ $(n = 2, 4, 6)^{\text{Note 3}}$	60 + 35 (n - 2) (n = 2, 3, 4, 5···)			
D-A 9□	5	15	30 Note 1)	$15 + 35 \frac{(n-2)}{2}$ (n = 2, 4, 6) Note 3)	50 + 35 (n - 2) (n = 2, 3, 4, 5···)			
D-M9□V	5	20	35	$20 + 35 \frac{(n-2)}{2}$ $(n = 2, 4, 6)^{\text{Note 3}}$	35 + 35 (n - 2) (n = 2, 3, 4, 5···)			
D-A9□V	5	15	25	$15 + 35 \frac{(n-2)}{2}$ $(n = 2, 4, 6)^{\text{Note 3}}$	25 + 35 (n - 2) (n = 2, 3, 4, 5···)			
D-M9□WV D-M9□AV	10	20	35	$20 + 35 \frac{(n-2)}{2}$ (n = 2, 4, 6) Note 3)	35 + 35 (n - 2) (n = 2, 3, 4, 5···)			
D-C7□ D-C80	5	20	60	$20 + 45 \frac{(n-2)}{2}$ $(n = 2, 4, 6)^{\text{Note 3}}$	60 + 45 (n - 2) (n = 2, 3, 4, 5···)			
D-H7□ D-H7□W D-H7BA D-H7NF	10	25	70	$25 + 45 \frac{(n-2)}{2}$ (n = 2, 4, 6···) Note 3)	70 + 45 (n – 2) (n = 2, 3, 4, 5···)			
D-C73C D-C80C D-H7C	5	30	80	$30 + 50 \frac{(n-2)}{2}$ $(n = 2, 4, 6)^{\text{Note 3}}$	80 + 50 (n - 2) (n = 2, 3, 4, 5···)			
D-B5□ D-B64 D-G5□ D-K59□	5	25	70	$25 + 50 \frac{(n-2)}{2}$ (n = 2, 4, 6···) Note 3)	70 + 50 (n - 2) (n = 2, 3, 4, 5···)			
D-B59W	10	30	75	$30 + 50 \frac{(n-2)}{2}$ $(n = 2, 4, 6)^{\text{Note 3}}$	75 + 50 (n - 2) (n = 2, 3, 4, 5···)			

Note 3) When "n" is an odd number, an even number that is one larger than this odd number is used for the calculation.

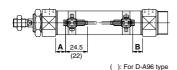
Note 1) Auto switch mounting

Note 2) Minimum stroke for auto switch mounting in styles other than those mentioned in Note 1.

REA REB

C \square X

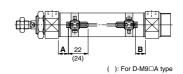
MQ RHC RZQ

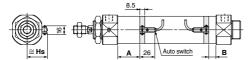

Series REC Auto Switch Mounting 2

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height

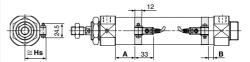
Reed auto switch

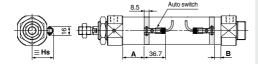
D-A9□

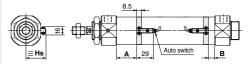


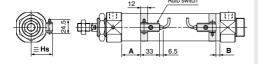

Solid state auto switch

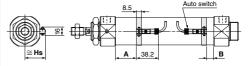
D-M9□ D-M9□A D-M9□W

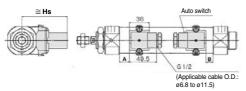


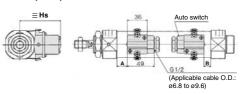

D-C7□, C80


D-G5NT


D-C73C, C80C


D-H7□, H7□W, H7NF, H7BA


D-B5□, B64, B59W


D-H7C

D-A44

D-A3□, G39, K39

Auto Switch Mounting $Series\ REC$

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height

(mm)

Auto Switch Proper Mounting Position

Auto Switch model	D-M9	9□(V) □W(V) □A(V)	D-A9	□(V)		7/C8 73C 80C	D- D-		D-B	59W	D-A D-C D-k	339 (39	D-H D-H	I7□ I7C 7□W 7BA 7NF	D-G	5NT
(mm)	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В
20	59.5	34	55.5	30.5	56	31	50	25	53	28	49.5	24.5	55	30	51.5	26.5
25	59.5	34	55.5	30.5	56	31	50	25	53	28	49.5	24.5	55	30	51.5	26.5
32	63	40	59	36	59.5	36.5	53.5	30.5	56.5	33.5	53	30	58.5	35.5	55	32
40	73.5	42.5	69.5	38.5	70	39	64	33	67	36	63.5	32.5	69	38	65.5	34.5

Note) Adjust the auto switch after confirming the operating conditions in the actual setting.

Auto Switch Mounting Height

Auto Switch model	D-M9□(V) D-M9□W(V) D-M9□A(V) D-A9□(V)	D-C7/C8 D-H7□ D-H7□W D-H7NF D-H7BA	D-B5□ D-B64 D-B59W D-G5NT D-H7C	D-C73C D-C80C	D-A3□ D-G39 D-K39	D-A44
(mm)	Hs	Hs	Hs	Hs	Hs	Hs
20	25	24.5	27.5	27	62	72
25	27.5	27	30	29.5	64.5	74.5
32	31	30.5	33.5	33	68	78
40	35.5	35	38	37.5	72.5	82.5

REA REB

REC

C□Y C□X

MQ RHC

RZQ

D-□ -X□

Series REC Auto Switch Mounting 3

Operating Range

				(mm)		
Auto switch model		Bore size				
Auto Switch model	20	25	32	40		
D-A9□	7	6	8	8		
D-M9□ D-M9□W	4	4	5	4		
D-C7□/C80 D-C73C/C80C	8	10	9	10		
D-B5□/B64	8	10	9	10		
D-B59W	13	13	14	14		
D-H7□/H7□W D-H7NF/H7BA	4	4	4.5	5		
D-H7C	7	8.5	9	10		
D-A3□/D-A44	9	10	9	10		
D-G39/D-K39	8	9	9	9		
D-G5NT	4	4	4.5	5		
D-G5NB	35	40	40	45		

Since this is a guideline including hysteresis, not meant to be guaranteed. (assuming

approximately ±30% dispersion.)
There may be the case it will vary substantially depending on an ambient environment.

Auto Switch Mounting Bracket Part No.

Auto switch model	Bore size (mm)						
Auto Switch model	ø 20	ø 25	ø 32	ø 40			
D-A9□(V) D-M9□(V) D-M9□W(V) D-M9□A(V)	BMA3-020	BMA3-025	BMA3-032	BMA3-040			
D-C7□/C80 D-C73C D-C80C D-H7□ D-H7□W D-H7BA D-H7NF	BMA2-020A	BMA2-025A	BMA2-032A	BMA2-040A			
D-B5□/B64 D-B59W D-G5□/K59 D-G5BA/G59W D-G5BA/G59F D-G5NT D-G5NB	BA-01	BA-02	BA-32	BA-04			

Note 1) Set part number which includes the auto switch mounting band (BM2-□□□A) and the holder kit (BJ5-1/Switch bracket: Transparent).

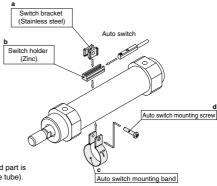
Since the switch bracket (made from nylon) are affected in an environment where alcohol, chloroform, methylamines, hydrochloric acid or sulfuric acid is splashed over, so it cannot be used. Please consult SMC regarding other chemicals.

Note 2) Set part number which includes the auto switch mounting band (BM2-□□□AS/Stainless steel screw) and the holder kit (BJ4-1/Switch bracket: White).

Note 3) For the D-M9□A(V) type auto switch, do not install the switch bracket on the indicator light.

[Mounting screw set made of stainless steel]

The following set of mounting screws made of stainless steel is available. Use it in accordance with the operating environment.


(Please order the auto switch mounting bracket separately, since it is not included.)

BBA4: For D-C7/C8/H7

Note 4) Refer to page 1990 for details of the BBA4.

The above stainless steel screws are used when a cylinder is shipped with the D-H7BA auto switch.

When only an auto switch is shipped independently, the BBA4 is attached.

- (1) BJ□-1 is a set of "a" and "b".
- (2) BM2-□□□A(S) is a set of "c" and "d".

Band (c) is mounted so that the projected part is on the internal side (contact side with the tube).

BJ4-1 (Switch bracket: White)

BJ5-1 (Switch bracket: Transparent)

Other than the applicable auto switches listed in "How to Order", the following auto switches can be mounted.

For detailed specifications, refer to pages 1893 to 2007.

Auto switch type	Model	Electrical entry (Fetching direction)	Features	Applicable bore size
	D-C73, C76		_	ø20 to ø40
Reed	D-C80		Without indicator light	020 10 040
	D-B53	Grommet	_	ø20 to ø40
	D-H7A1, H7A2, H7B	(In-line)	_	ø20 to ø40
Solid state	D-H7NW, H7PW, H7BW		Diagnostic indication (2-color indication)	Ø20 t0 Ø40
	D-G5NT		With timer	ø20 to ø40

For solid state auto switches, auto switches with a pre-wired connector are also available. Refer to pages 1960 and 1961 for details.
Normally closed (NC = b content) solid state auto switches (D-F9G/F9H types) are also available. Refer to page 1911 for details.
Wide range detection type, solid state auto switches (D-GSNB type) are also available. Refer to page 1953 for details.

Series REC Specific Product Precautions

Be sure to read before handling.

Refer to front matter 39 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

1. Speed Adjustment

Throttle speed controller, such as Series AS, is recommended for speed adjustment.

Recommended Speed Controller

Model	Model						
Wiodei	Elbow type	Straight type	In-line type				
REC20	AS2201F-01-06-X214	AS2301F-01-06-X214	AS2001F-06-X214				
REC25	AS2201F-01-06-X214	AS2301F-01-06-X214	AS2001F-06-X214				
REC32	AS2201F-01-06-X214	AS2301F-01-06-X214	AS3001F-08-X214				
REC40	AS3201F-02-08-X214	AS3301F-02-08-X214	AS3001F-08-X214				

Symbol: Throttle valve

- Speed control is possible with meter-in and meter-out types of speed controllers. However, smooth acceleration and deceleration may not be obtained by these speed controllers.
- For installation other than horizontal mounting, it is recommended to use a system with reduced pressure supply circuit on the downward side. (This system is also effective for avoiding a start delay at rise and air consumption.)

2. Cushion Adjustment

Cushion adjustment mechanism is not designed.

Cushion adjustment is not necessary because the model can perform smooth acceleration and deceleration in a wide range of strokes without an adjusting cushion.

3. Plug (Relief Port)

For general conditions, a plug (M5 x 0.8) on the rod cover side is plugged with a hexagon socket head set screw $(\hat{\mathbf{b}})$. Do not remove it since dust may enter inside.

Hexagon socket set screw is not prepared for clean room specifications, and use it as relief port accordingly.

4. Cycle Time

Due to the nature of its construction, this cylinder starts and stops gradually. Therefore, the length of time for the stroke could be longer than that of standard cylinders.

REA

REB

REC C□Y

C□X

MQ RHC

RZQ

D-□

-**X**□

