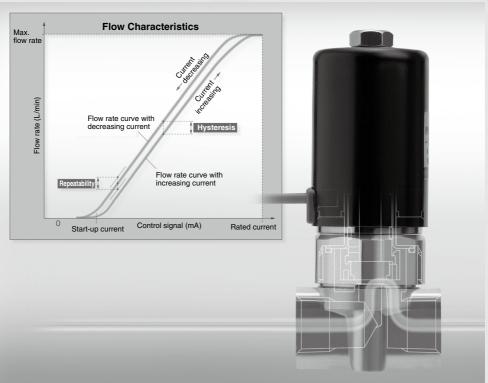
Compact Proportional Solenoid Valve

Series PVQ

Repeatability: 3% or less Hysteresis: 10% or less

Fluid	Flow rate control range Note)	Series
Air Inort acc	0 to 6 L/min	PVQ10
Air, Inert gas	0 to 100 L/min	PVQ30

Note) Varies depending on the model.


ARX AMR

> ARM ARP

IR

VEX

Control the flow rate smoothly according to the current

873

AR425 to 935

IRV

SRH

SRP

SRF VCHR

ITV

IC ITVX

PVQ

VER VEA

VY1 VBA VBAT AP100 Service life: Lasts 25 million cycles. (PVQ30)

(SMC in-house life test conditions)

Specially coated sliding surface realized 25 million cycles within set operating range

Body material: Equivalent to C37 or Stainless Steel 304 (PVQ30)

Seal material: FKM (PVQ10, PVQ30)

Valve returns to closed position when power supply is turned off.

Leakage amount: 5 cm³/min or less at OFF

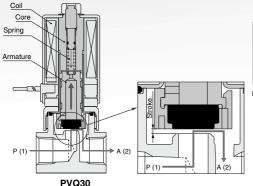
Can be used with vacuum. (Minimum operating pressure 0.1 Pa-abs)

Operation noise during opening/ closing of the valve reduced

DV040	ON	30 dB or less 32 dB or less	PVQ3
PVQ10	OFF	32 dB or less	PVQ3
. D I			. David

•	PVQ30	ON	43 dB or less		
		OFF	50 dB or less		
* Packground poice: 20 to 25 dP					

O-rina

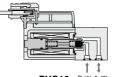

Can be mounted on manifolds

When continuously energizing adjacent valves at the same time, ambient temperature rises since the coil generates heat. Implement measures to exhaust excess heat so that the temperature remains within the range of the table on the right.

Table: Coil outer surface temperature range Model Coil outer surface temperature PVQ10 90°C or less PVQ30 100°C or less

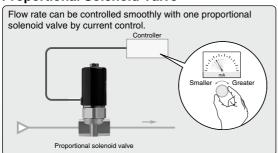
O-ring

Ambient temperature: 50°C at the valve proximal section (approx. 1 mm) when the maximum current is applied

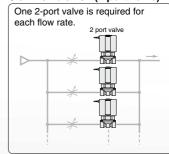

Working Principle

The armature is attracted to the core by electromagnetic force as the coil is energized

When the applied current varies, the attraction force also varies proportionally to it.


The flow rate is controlled by the movement (stroke) of the armature, depending on the balance between this attraction force and the spring load.

Note) Sliding resistance at this point is the hysteresis of the flow.




PVQ10 P(1) A(2)

Proportional Solenoid Valve

Conventional (2 port valve)

Model	PVQ13	PVQ31	PVQ33
Piping type	Base mounted	Body ported	Base mounted
	C C C C C C C C C C C C C C C C C C C	Bracket (Option)	

Valve construction	Direct operated poppet				Direct operated poppet		
Valve type	N.C.				N.C.		
Orifice size (mm)	0.3 0.4 0.6 0.8		0.8	1.6	2.3	4	
Max. operating pressure (MPa)	sure (MPa) 0.7 0.45 0.2		0.1	0.7	0.35	0.12	
Flow rate (L/min)	0 to 5 0 to 6 0 to 5			0 to 5	0 to 100 0 to 75		
Applied current (Power supply)	0 to 85 mA (24 VDC) 0 to 170 mA (12 VDC)					to 165 mA (24 VDC) to 330 mA (12 VDC)	
Port size	M5					1/8	

VEX SRH

ARJ

AR425 to 935 ARX

ARM ARP IR

SRP

SRF VCHR

ITV

IC

ITVX PVQ

VEF VEP

VER VEA

VY1

AP100

Series PVQ Model Selection

<To use orifice Ø1.6 (See PVQ30: Chart 1)>

Condition 1. $P_1 = 0.7 \text{ Mpa}$, $P_2 = 0 \text{ MPa}$ (Atmospheric pressure)

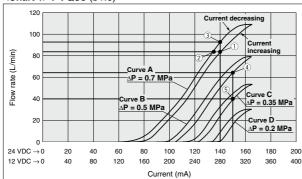
Refer to curve A when ΔP is 0.7 MPa.

ΔP = (P₁ – P₂) MPa ΔP: Pressure differential P₁: Inlet pressure P₂: Outlet pressure

Ex) At increasing current, the flow rate when 140 mA current is applied is 85 L/min. (See ①.) If current decreases at this point, the flow rate may not change by 135 mA due to hysteresis. (See ②.) The flow rate at increasing current and decreasing current are not the same due to hysteresis. (① 85 L/min., ③ 93 L/min.)

Condition 2. $P_1 = 0.7 \text{ MPa}, P_2 = 0.2 \text{ MPa}$

Refer to curve B when ΔP is 0.5 MPa.


- Ex) At increasing current, the flow rate when 150 mA current is applied is 65 L/min. (See ④.)

 If the outlet pressure P₂ increases by 0.15 MPa, ΔP decreases by 0.15 MPa and becomes 0.35 MPa (See curve C), and the flow rate when the same current is applied is 40 L/min. (See ⑤.)
- The flow rate decreases due to change (increase) in outlet pressure, even if the inlet pressure and current value are the same.

Condition 3. In a vacuum

- For vacuum specifications, the operating pressure range is from 0.1 Pa-abs to max. operating pressure differential.
- A(2) port is applicable with vacuum pressure.

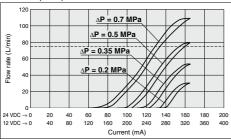
<Chart 1> PVQ30 (Ø1.6)

Q. Required flow rate = 0 to 75 L/min.

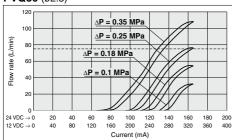
P₁ = No conditions, P₂ = 0 MPa (Atmospheric pressure)

In this case, all orifice sizes of PVQ30 series satisfy the required flow rate. (Flow rate when rated current is applied) The table below shows the pressure differentials to satisfy the required flow rate. In the flow rate characteristic charts, a pressure differential over the flow rate indicated by the dashed line (75 L/min.) up to the max. operating pressure differential will satisfy the required flow rate.

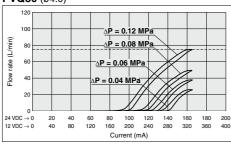
Table. Pressure differential to satisfy required flow rate = 0 to 75 L/min.


	ø1.6	ø2.3	ø4.0
Pressure differential (ΔP)	0.5 to 0.7 MPa	0.25 to 0.35 MPa	0.12 MPa

 $\Delta P = (P_1 - P_2) MPa$ ΔP : Pressure differential


P₁: Inlet pressure

P₂: Outlet pressure


PVQ30 (Ø1.6)

PVQ30 (ø2.3)

PVQ30 (ø4.0)

Note

- 1) Follow the same procedure for selecting PVQ10 series.
- Flow rate depends on individual differences between valves and piping conditions. Refer to flow characteristic chart to select the model with adequate margin for required flow rate.

AR425 to 935

ARJ

ARX AMR

ARM

ARP

IR IRV

VEX

SRH

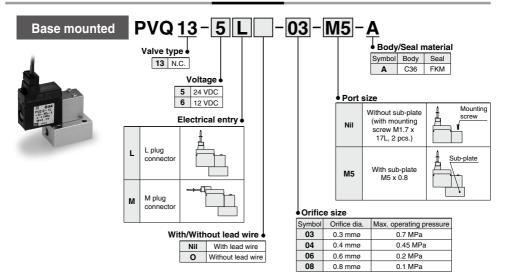
SRF

VCHR ITV

IC

ITVX PVO

VEF VEP


VER VEA

VY1

AP100

Series PVQ10

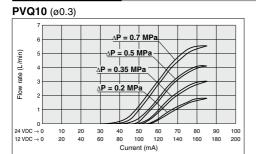
How to Order

Specifications

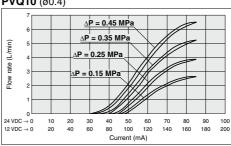
specifications	Valve construction	Direct opera	ated poppet	
	Fluid	Air, Inc	ert gas	
	Seal material	FF	KM	
ij	Body material	C	36	
ge	Fluid temperature	0 to +	-50°C	
		0 to +50°C		
	Action	N.C. (Normally closed)		
	Mounting orientation	Unrestricted		
٠,	Port size	N	15	
su	Power supply	24 VDC	12 VDC	
atic	Coil current	0 to 85 mA	0 to 170 mA	
Signal Signal	Power consumption	0 to	2 W	
sbe	Coil insulation	Class B		
Coil	Port size Power supply Coil current Power consumption Coil insulation	24 VDC 0 to 85 mA 0 to	15 12 VDC 0 to 170 mA 2 W ss B	

	Orifice diameter (mmø)	0.3	0.4	0.6	0.8
	Max. operating pressure differential (MPa) Note 2)	0.7	0.45	0.2	0.1
istic	Max. operating pressure (MPa)	1 MPa			
1 to 10	Min. operating pressure (MPa) (Vacuum) Note 3)	0 (0.1 Pa.abs)			
racte	Flow rate (L/min) (at max. operating pressure differential)	0 to 5	0 to 5 0 to 6		
Chara	Hysteresis (at max. operating pressure differential)	10% or less			
	Repeatability (at max. operating pressure differential)	3% or less			
	Start-up current (at max. operating pressure differential)	50% or less			

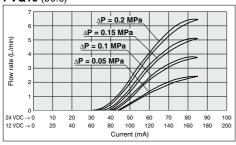
Note 1) Ambient temperature is for the valve proximal section (approx. 1 mm).

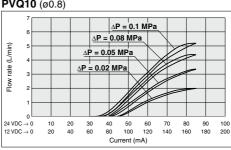

When the valve is continuously energized at an ambient temperature of 50°C (when applying maximum current), the coil outer surface reaches 90°C. The temperature changes depending on the operating conditions, and the coil outer surface temperature must be kept at 90°C or lower.

Note 2) Maximum operating or interpretating of interpretation of the control of t

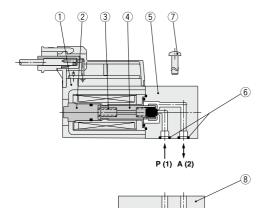

Note 3) For vacuum application, max. operating pressure range is 0.1 Pa-abs to max. operating pressure differential. A(2) port is applicable for vacuum pressure.

Compact Proportional Solenoid Valve Series PVQ10


Flow Characteristics


PVQ10 (Ø0.4)

PVQ10 (Ø0.6)


PVQ10 (Ø0.8)

Note) Flow rate varies depending on model differences and piping conditions.

Select the model that fully satisfies the necessary flow rate based on the flow characteristics graphs.

Construction

(Shows with sub-plate)

poner	

No.	Description	Material	Note
1	Solenoid coil assembly	_	
2	Core	Stainless steel	
3	Return spring	Stainless steel	
4	Armature assembly	Stainless steel, Aluminum, FKM	
5	Body	C36	
6	O-ring	FKM	
7	Round head combination screw	Steel	M1.7 x 0.35 x 17L, 2 pcs.
8	Sub-plate	C36	Part no: PVQ10-15-M5

ARJ AR425 to 935

ARX AMR

ARM ARP

IR

IRV VEX

SRH SRP

SRF VCHR

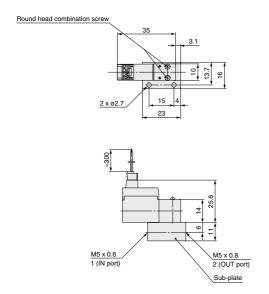
ITV IC

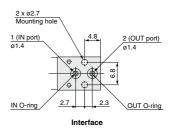
ITVX

PVQ

VEF VEP VER

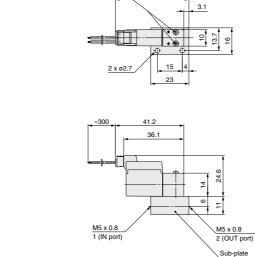
VEA VY1

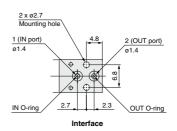

VBA VBAT


AP100

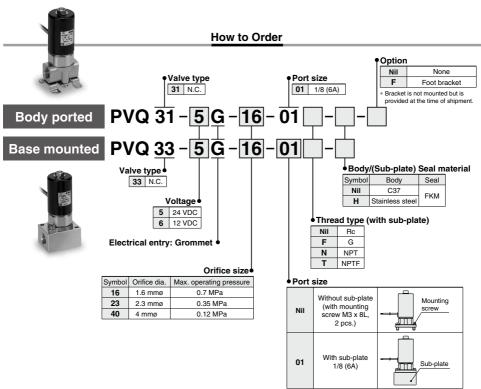
Series PVQ10

Dimensions


L plug connector PVQ13-□L-□-M5



M plug connector PVQ13-□M-□-M5


Round head combination screw

44.3

Compact Proportional Solenoid Valve Series PVQ30

Specifications

	Valve construction	Direct opera	ated poppet	
SI	Fluid	Air, Inc	ert gas	
엹	Seal material	FKM		
cific	Body material	C37 (Standard), Stainless ste		
eci	Fluid temperature	0 to +50°C		
Standard specifications	Ambient temperature Note 1)	0 to +50°C		
	Action	N.C. (Normally closed)		
	Mounting orientation	Unrestricted		
St	Enclosure	IP40		
	Port size	Rc	1/8	
suc	Power supply	24 VDC	12 VDC	
ăţi 📰	Coil current	0 to 165 mA	0 to 330 mA	
Coil specifications	Power consumption	0 to	4 W	
sbe	Coil insulation	Class B		

	Orifice diameter (mmø)	1.6	2.3	4.0	
suo	Max. operating pressure differential (MPa) Note 2)	0.7	0.35	0.12	
jŧ.	Max. operating pressure (MPa)	1 MPa			
specifications	Min. operating pressure (MPa) (Vacuum) Note 3)	0 (0.1 Pa.abs)			
	Flow rate (L/min) (at max. operating pressure differential)	0 to	0 to 75		
cteris	Hysteresis (at max. operating pressure differential)	10% or less		13% or less	
Characteristic	Repeatability (at max. operating pressure differential)	3% or less		3	
	Start-up current (at max. operating pressure differential)	50% (65% or less		

Note 1) Ambient temperature is for the valve proximal section (approx. 1 mm).

ARJ AR425

ARX

AMR

ARM

ARP

IR

IRV

VEX

SRH

SRP

SRF

VCHR

ITV

IC

ITVX

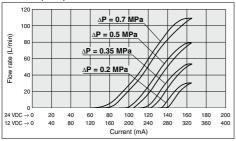
PVQ

VEF VEP

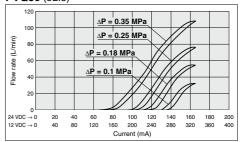
VER VEA VY1 VBA VBAT AP100

When the valve is continuously energized at an ambient temperature of 50°C (when applying maximum current), the coil outer surface reaches 100°C. The temperature changes depending on the operating conditions, and the coil outer surface temperature must be kept at 100°C or lower. Note 2) Maximum operating pressure differential indicates pressure differential (difference between inlet and outlet pressure) which can be allowed for operation with the valve

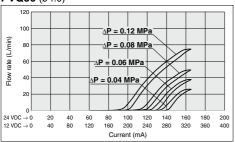
closed or open. If the pressure differential exceeds the max. operating pressure differential of orifice, the valve may leak.


Note 3) For vacuum application, max. operating pressure range is 0.1 Pa-abs to max. operating pressure differential. A(2) port is applicable for vacuum pressure.

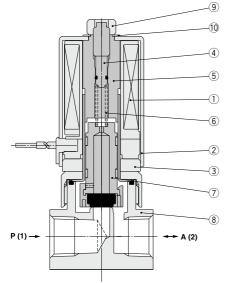
Series PVQ30


Flow Characteristics

Air


PVQ30 (Ø1.6)

PVQ30 (ø2.3)


PVQ30 (Ø4.0)

Note) Flow rate varies depending on model differences and piping conditions.

Select the model that fully satisfies the necessary flow rate based on the flow characteristics graphs.

Construction

Component Parts

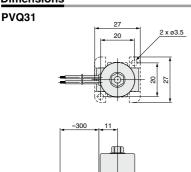
No.	Description	Material		Note		
1	Solenoid coil assembly	_				
2	Coil cover	SPCE				
3	Magnetic plate	SUY				
4	Adjusting screw	Stainless steel				
5	Tube assembly	Stainless steel				
6	Return spring	Stainless steel				
7	Armature assembly	Stainless steel, PPS, PTFE, FKM				
8	Body	C37 or Stainless steel				
9	Nut	Steel				
10	Wave washer	Stainless steel				
11	Round head combination screw	Copper		M3 x 0.5 x 8L, 2 pcs.		
12	Sub-plate	C36 or Stainless steel	Base mounted	Part no.: PVQ30-15□-01□		
13	O-ring	FKM	only			
14	O-ring	FKM				
Oution (Dade named ands)						

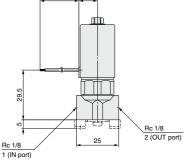
Option (Body ported only)

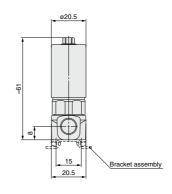
SMC

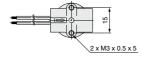
Bracket assembly: VDW20-15A-1

Sub-plate Part No.

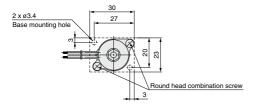

PVQ30-15 -01 Thread type

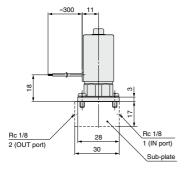

Material

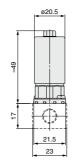

C C C36
S Stainless steel

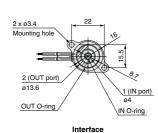

Compact Proportional Solenoid Valve Series PVQ30

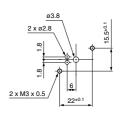
Dimensions








PVQ33



SMC

Machining dimension of base side

ARJ AR425 to 935

ARX AMR

ARM

IR

IRV

VEX SRH

SRP

SRF VCHR

ITV

IC

ITVX PVQ

VEF VEP

VEA VY1

VBA VBAT

883

Series PVQ Glossary

■ Proportional control

Control the fluid proportionally according to input signal (current).

■ Max. operating pressure differential

Indicates max. pressure differential (difference between inlet and outlet pressure) which is allowed for operation with the valve closed or open.

■ Max. operating pressure

This indicates the limit of pressure that can be applied to the inlet. (The pressure differential of the proportional valve must be no more than the maximum operating pressure differential.)

Orifice diameter

Diameter of the hole for sealing the valve body of the proportional valve. This does not indicate the effective cross section.

■ Hysteresis

Greatest flow rate difference between current increase and current decrease (with the same current). (Percentage divided by max. flow rate)

■ Repeatability

Deviation of output flow rate when the same current is applied. (Percentage divided by max. flow rate)

■ Start-up current

Current at which the flow rate is actually output while increasing current from zero. (Percentage divided by rated current)

Series PVQ Specific Product Precautions

Be sure to read before handling. Refer to front matter 43 for Safety Precautions.

Power Source Selection

⚠ Caution

This product makes proportional control possible with constant current.

If controlled with voltage, the output flow rate cannot be kept constant due to current fluctuation. Use stable DC power source of sufficient capacity without much ripple.

Handling

⚠ Caution

 This product is adjusted to the respective specifications at SMC factory before delivery.

Do not disassemble the product or remove parts as it could cause breakdown of the product.

2. Flow rate is controlled by balancing the valve body.

Do not expose the product to external vibration and impact as it changes the flow rate.

Vibration may occur depending on the piping conditions or control methods.

Pressure Difference

Leakage from the valve may be caused if the pressure difference is larger than the maximum operating pressure differential of the respective models.

Flow Rate

⚠ Caution

Flow rate varies depending on model differences and piping conditions.

Select the model that fully satisfies the necessary flow rate based on the flow characteristics graphs.

Operation in Vacuum

∧ Caution

When the product is used in vacuum, apply vacuum pressure to A (2) port.

The pressure at P(1) port should be larger than the pressure at A(2) port.

Valve Mounting

⚠ Caution

When mounting a valve to the sub-plate, tighten the screw securely with the tightening torque shown in the table below after checking the installation condition of the O-ring on the interface side.

Proper Tightening Torque (N·m)

PVQ10 (Base mounted)	PVQ30 (Base mounted)	8
0.15 to 0.22	0.8 to 1.0	-
		_ IS

Continuous Energization

⚠ Warning

Do not touch the valve directly with hands. The coil can be hot depending on the ambient temperature or energizing time.

Install a protective cover over the valve if it can be touched directly with hands.

ARJ

AR425 to 935

AMR

ARP

IR IRV

VEX

SRH SRP

SRF

VCHR ITV

IC

ITVX PVQ

VEF VEP

VER VEA

VY1
VBA
VBAT