
Rotary Actuators

Series Variations

Best Pneumatics

Series Variations

Vane Style Rotary Actuators Series Variations

	Exterior	Fea	atures	Points of how to select a rotary actuator	
	Series CRB2-Z Size 10, 15, 20, 30, 40	 Has a compact body with exterior dimensions that do not change regard- less of the rotation angle, up to a maximum of 	Round and compact type	 Suitable for applications in which compactness of the actuator is particularly important. Can be used as a part of a robot arm, due to its compact and lightweight package. Note) There is no protrusion in the radial direction even if a switch unit or an angle adjustment unit is installed. 	
Vane Style	Series CRBU2 Size 10, 15, 20, 30, 40	 280°. No backlash in terms of construction. The piping outlets are available in two directions: the body side or the axial direction. If a double vane style is used, twice the torque of the single vane can be attained while the external configuration remains identical to that of the single vane (except for size 10). The amount of leakage is extremely small due to 	 Can be mounted in the ver- tical, horizontal and axial directions. 	 Suitable for applications in which compactness of the actuator is important due to constraints in the mounting direction. 	
	Series CRB1 Size 50, 63, 80, 100	the adoption of a special - seal construction.	 Even if it is equipped with an auto switch, the piping outlets are available in two directions: the body side or the axial direction. 	 Provides a rotation angle of up to 280° and has a large torque. Suitable for appli- cations in which compact- ness of the actuator is im- portant. 	
	Rotary table/High precision type Series MSUA Size 1, 3, 7, 20)	Improved table top deflec- tion 0.03 mm or less	When deflection accuracy for table top is required.	
	Rotary table Series MSUB Size 1, 3, 7, 20	up to a maximum of 190°. • No backlash in terms of construction.	 A load can be mounted directly. The rotation range can be adjusted easily. Angle adjustment is provided as standard. The body can be centered easily during installation. 	 Suitable for applications in which a table is required. Suitable for applications in which compactness of the actuator is important due to constraints in the mounting direction. Can be used as a part of a robot arm. 	

Vane Style/Rotary Actuators Series Variations

★ Conditions: 0.5 MPa													
	Action	Size				ig angl			★ Effective torque Speed regulation range		Page		
	71011011		90°	100°	180°	190°	270°	280°	(N⋅m)	(s/90°)	(J)	1 ago	
		10							0.12		0.00015	-	0000
	Single	15							0.32	0.03 to 0.3	0.0001		CRB2 -Z
	vane	20					<u> </u>	<u> </u>	0.70		0.003	-	CRBU2
		30							1.83	0.04 to 0.3	0.020	-	
		40						<u> </u>	3.73	0.07 to 0.5	0.040	47 to 78	CRB1
		10		<u> </u>					0.25		0.0003	-	MSU
	Double	15			<u> </u>		<u> </u>	<u> </u>	0.65	0.03 to 0.3	0.0012		
	vane	20					<u> </u>	<u> </u>	1.45		0.0033	-	CRJ
		30							3.70	0.04 to 0.3	0.020	-	CRA1 -Z
		40							7.59	0.07 to 0.5	0.040		
		10							0.12		0.00015	-	CRA1
	Single	15		<u> </u>				<u> </u>	0.32	0.03 to 0.3	0.0001	-	CRQ2
	vane	20		<u> </u>					0.70		0.003	-	1400
		30		<u> </u>					1.83	0.04 to 0.3	0.020	-	MSQ
		40							3.73	0.07 to 0.5	0.040	79 to 112	MSZ
	Double vane	10							0.25		0.0003	-	CRQ2X
		15							0.65	0.03 to 0.3	0.0012		MSQX
		20							1.45		0.0033		MRQ
		30							3.70	0.04 to 0.3	0.020		
		40							7.59	0.07 to 0.5	0.040		
		50							5.69		0.082		
	Single	63							10.8		0.120		
	vane	80							18.0		0.398		
		100							35.9	0.1 to 1	0.600	113 to 145	
		50							11.8	0.1101	0.112		
	Double	63							22.7		0.160		
	vane	80							36.5		0.540		
		100							72.6		0.811		
		1							0.11		0.0065		
	Single	3							0.31		0.017		
	vane	7							0.69		0.042		
		20							1.78		0.073		
		1							0.11		0.005		
	Single	3							0.31	0.07 to 0.3	0.013	147 to 178	
	vane	7							0.69	0.07 10 0.3	0.032		
		20							1.78		0.056		
		1							0.23		0.005		
	Double	3							0.62		0.013		D -□
	vane	7							1.42		0.032		
		20							3.63		0.056		
	Romarke: 1	Effective to	auo: The	voluce	nivon in t	the table	abovo u	hich are	representative values	could vary accordin	a to usage conditions and	thus thou	

Remarks: 1. Effective torque: The values given in the table above, which are representative values, could vary according to usage conditions and thus they are not guaranteed.

Adjustable speed range: If the product is used below the low-speed range, it could cause the product to stick.
 Series MSU, Single vane type is angle adjustable ±5° at the edge of rotation of the angle range and ±2.5° for double vane type.

4. For the Series MSU, take the moment of inertia of the table in consideration in calculating the kinetic energy of the load.

Rack & Pinion Style Rotary Actuators Series Variations

	Exterior	Fea	atures	Points of how to select a rotary actuator
	Series CRJB Size 05, 1 (Basic Type)	 Lightweight, compact Able to integrate the wir- 	• Can be mounted from three directions: top and bottom of the main body and the back side	Suitable for applications in which compactness of the actuator is particularly important.
Rack & Pinion Style	Series CRJU Size 05, 1 (With external stopper)	ing and the piping in the front side or lateral side. • No backlash.	 Can be mounted from two directions: bottom of the main body and the back side Angle adjustment is possible. 	Suitable for applications in which compactness of the actuator is particularly im- portant. When angle adjustment is required.
	Series CRA1-Z Size 50, 63, 80, 100		 A compact auto switch (D- M9□ type) can be mounted. (CRA1-Z only) There is a slight backlash of less than 1° due to the single piston construction. 	When the mounting of a compact auto switch (D-M9I type) is required. When it is necessary to make a full-width product more compact.
	Series CRA1 Size 30, 50, 63, 80, 100	Can be used at relatively slower speeds, as com- pared with the vane style. Can be selected with air cushion. (CRA1: 30 excepted)		 Suitable for applications that require a wide range of speed adjustment. Suitable for air-hydro appli- cations.
	Series CRQ2 Size 10, 15, 20, 30, 40	(GRQ2: 10, 15	There is no backlash be- cause the double piston style has been adopted.	 Suitable for applications in which a thin profile is required. Suitable for applications requiring no backlash.
	Rotary table Series MSQ Size 1, 2, 3, 7, 10, 20, 30, 50, 70, 100, 200 Size 10, 20, 30, 50 (With external shock absorber)	 A thin rotary table unit with a low table top height. No backlash. Piping direction is selectable from the edge side of the main body and the lateral side. Actuator with internal shock absorber is selectable. (Size 10, 20, 30, 50, 70, 100, 200) Actuator with external shock absorber is selectable. (Size 10, 20, 30, 50) 	 The body can be centered easily during installation. A load can be mounted directly. The angle can be adjusted as desired. (Between 0° and 190°) (Adjustor bolt, Internal absorber) The body can be used as a flange. 	 Suitable for applications in which a table is required. Suitable for applications in which a thin profile is required particularly. Suitable for applications requiring no backlash.
	3-position rotary table Series MSZ Size 10, 20, 30, 50	 Can be controlled with a solenoid valve located in the 3 position pressure center. No backlash. 	 Right and left rotation ends can be adjustable at 0 to 95° from the central posi- tion. 	Suitable for 3 position stop- ping.
	Low-speed rotary actuator Series CRQ2X Size 10, 15, 20, 30, 40	 Stable operation possible at 5 s/30°. 	Dimensions the same as Series CRQ2.	Suitable for low-speed op- eration.
	Low-speed rotary table Series MSQX Size 10, 20, 30, 50		• Dimensions the same as Series MSQ.	

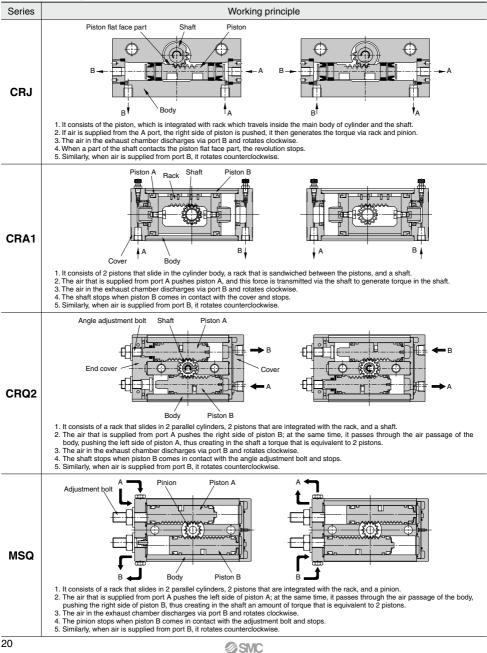
Rotary cylinder Series MRQ Size 32, 40 p. 379 to 397

A direct rotary unit in which a thin cylinder and a rotary actuator have been integrated in a compact package. + Rotation angle/80 to 100°, 170 to 190°

Linear stroke/5, 10, 15, 20, 25, 30, 40, 50, 75, 100 mm

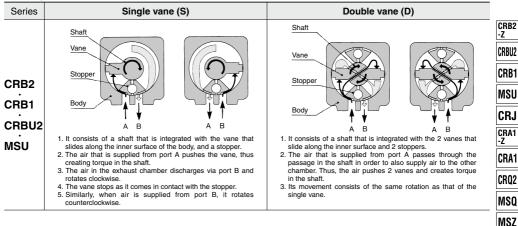
Rack & Pinion Style/Rotary Actuators Series Variations

Action	0:		Rot	tating ar	ngle		★ Effective torque	Speed regulation range	Allowable kinetic energy	Darre	
Action	Size	90°	100°	180°	190°	360°	(N⋅m)	(s/90°)	(J)	Page	
	05						0.042		0.00025		
								0.1 to 0.5			
Single	1						0.095		0.001	179 to 190	
rack pinion	05						0.042		0.0004		ĺ
	1						0.095	0.1 to 0.5	0.002	_	
	30						1.91	0.2 to 1	0.010		
	50						9.27	0.2 to 2	0.050 0.98 *		
Single	63						17.2	0.2 to 3	0.12	191 to 268	
rack pinion	80						31.7	0.2 to 4	1.5 * 0.16	101 10 200	
									2.0* 0.54		
	100						74.3	0.2 to 5	2.9*		ł
-	10 15						0.3	0.2 to 0.7	0.00025 0.00039		
Double	20						1.84		0.025		
rack pinion	30						3.11	0.2 to 1	0.12 * 0.048 0.25 *	269 to 296	ĺ
	40						5.3		0.081		ĺ
	1		-				0.087		0.4*		
	2						0.18	0.2 to 0.7	0.0015		
	3						0.29		0.002		
	7						0.56	0.2 to 1	0.006	- 297 to 322	
	10						0.89		0.007		
	20						1.84	0.2 to 1	0.025		
Double	30						2.73	With shock absorber:	0.048		
rack pinion	50						4.64	0.2 to 0.7	0.116* 0.081		
	70						6.79	(With shock absorber: 0.2 to 1.5 0.2 to 1)	0.294* 0.24		
	70						0.73	0.2 to 2	1.1*		
	100						10.1	(With shock absorber: 0.2 to 1	0.32 1.6*	-	
	200						19.8	(With shock absorber: 0.2 to 1	0.56 2.9*		
	10						0.90		0.007		
Double	20						1.78	78 0.2 to 1 0.025	0.025	323 to 335	
rack pinion	30			2.65 0.048							
	50						4.75		0.081		
	10 15						0.3	0.7 to 5	0.00025 0.00039		
Double	20						1.84		0.025		
rack pinion	30		-		-		3.11	1 to 5	0.025		
	40				-	-	5.3	110.5	0.048	337 to 377	
	10					-	0.89		0.007	001 10 3/1	
									0.025		
Double	20										
Double rack pinion	20 30						1.84 2.73	1 to 5	0.025		


Remarks: 1. Effective torque: The values given in the table above, which are representative values, could vary according to usage conditions and thus they

Effective forque: The values given in the table above, which are representative values, could vary according to usage contained and use any are not guaranteed.
 Adjustable speed range: If the product is used at a speed lower than the adjustment range, it may cause the product to stick or stop.
 Adjustable energy:

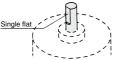
 Symbol: The * symbol in the allowable energy for the Series CRA1 and the Series CRQ2 indicates the value of an actuator that is equipped with an air customer.
 Refer to page 315 for allowable energy of the external shock absorber type (L type, H type) for the Series MSQ.


Working Principle

Rack & Pinion Style

Working Principle: How to Mount Loads

Vane Style



@SMC

How to Mount Loads

How to connect a load directly to a single flat shaft

To secure the load, select a bolt of an appropriate size from those listed in tables 1 and 2 by taking the shaft's single flat bearing stress strength into consideration.

Table (1) Directly Fixed with Bolts (Refer to Figure (1).)

Model	Size	Shaft bore size	Screw
CRQ2	10	5	M5 or larger
Chuz	15	6	W5 OF larger
	10	4	M4 or larger
CBB2	15	5	M5 or larger
CRD2	20	6	Wio or larger
	30	8	M6 or larger
	10	4	M4 or larger
CRBU2	15	5	M5 or larger
CRBUZ	20	6	WIJ OF larger
	30	8	M6 or larger
CRJ	05	5	M5 or larger
ChJ	1	6	wis of larger

		L LIOIUIII C	NOCK (HEIEI	to i iguie (2).)
Model	Size	Shaft bore size	Screw	Plate thickness (t)
CRQ2	10	5	M3 or larger	2.3 or wider
Chuz	15	6	M4 or larger	3.6 or wider
	10	4	M3 or larger	2 or wider
CRB2	15	5	NIS OF larger	2.3 or wider
CHDZ	20	6	M4 or larger	3.6 or wider
	30	8	M5 or larger	4 or wider
	10	4	M3 or larger	2 or wider
CRBU2	15	5	NO OF larger	2.3 or wider
CRBUZ	20	6	M4 or larger	3.6 or wider
	30	8	M5 or larger	4 or wider
001	05	5	M3 or larger	2.3 or wider
CRJ	1	6	M4 or larger	3.6 or wider

Table (2) Fixed with a Holding Block (Befer to Figure (2))

The plate thickness (t) in the table above indicates a reference value when a carbon steel is used. Besides, we do not manufacture a holding block.

CR02X

MSQX

MRQ

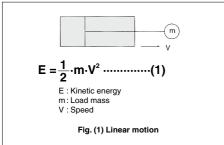
Calculation of Moment of Inertia	<u>2</u> 4
1 Equation Table of Moment of Inertia P.2	25
1-2 Calculation Example of Moment of Inertia	26
1 -3 Graph for Calculating the Moment of InertiaP.2	28
2 Calculation of Required Torque	30
2-1 Load Type P.3	30
2-2 Effective Torque P.3	31
2-3 Effective Torque for Each Equipment P.3	31
Confirmation of Rotation Time	33
Calculation of Kinetic Energy P.3	34
4-1 Allowable Kinetic Energy and Rotation Time Adjustment Range P.3	35
4-2 Moment of Inertia and Rotation Time P.3	36
G Confirmation of Allowable Load	39
6 Calculation of Air Consumption and Required Air Flow Capacity P.4	1 0
3-1 Inner Volume and Air Consumption	11
6-2 Air Consumption Calculation Graph	13

(Refer to pages 338 to 343 for the selection of low-speed rotary actuators Series CRQ2X/MSQX.

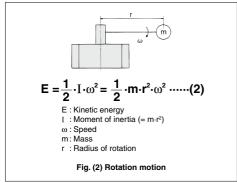
election Procedures	Note	Selection Example	
perating conditions are as f	ollows:		
Operating conditions are as follows: • Tentative models • Operating pressure (MPa)	 Refer to page 30 for the load type. The unit for the rotation angle is radian. 180° = πrad 	10^{0} $r = 25, 0.2 \text{ kg}$ 0.4 kg	
Mounting orientation Load type Static load	$90^{\circ} = \pi/2$ rad		
Resistance load Inertial load • Load dimensions (m)		10	
Load mass (kg) Rotation time (s) Rotation angle (rad)			
		Tentative model: MSQB30A Operating pressure: 0.3 MPa Mounting orientation: Vertical Load type: Inertial load Rotation time: t = 1.5s. Rotation angle: θ = πrad (180°)	
Calculation of Moment of Ine	ertia	Hotation time, t = 1.55 Hotation angles of = Arab (1887)	
alculate the inertial moment of load.	Loads are generated from multiple parts.	Inertial moment of load 1 I1	
⇒P.24	The inertial moment of each load is calculated, and then totaled.	$I_1 = 0.4 \ x \ \frac{0.15^2 + 0.05^2}{12} + 0.4 \ x \ 0.05^2 = 0.001833$ Inertial moment of load 2 I_2	
		$I_2 = 0.2 \times \frac{0.025^2}{2} + 0.2 \times 0.1^2 = 0.002063$	
		Total inertial moment I $I = I_1 + I_2 = 0.003896 [kg·m2]$	
Calculation of Required Tore	que		
Calculate the required torque for each oad type and confirm whether the values all in the effective torque range. Static load (Ts) Required torque: T = Ts Resistance load (Tf) Required torque: T = Tf (3 to 5) Inertial load (Ta) Required torque: T = Ta x 10 \Rightarrow P.30	When the resistance load is rotated, the required torque calculated from the inertial load must be added. Required torque T = Tf x (3 to 5) + Ta x 10	Inertial load: Ta Ta = I- ω $\dot{\omega} = \frac{2\theta}{t^2} [rad/s^2]$ Required torque: T T = Ta × 10 = 0.003896 x $\frac{1.5^2}{1.5^2}$ x 10 = 0.109 [N·m] 0.109 Nm < Effective torque OK	
Confirmation of Rotation Tir	me		
Confirm whether the time falls in the otation time adjustment range. \Rightarrow P.33	 Consider the time after converted in the time per 90°. (1.0 s/180° is converted in 0.5 s/90°.) 	0.2 ≤ t ≤ 1.0 t = 0.75s/90°OK	
Calculation of Kinetic Energ	IY		
Calculate the kinetic energy of the load and confirm whether the energy is below he allowable range. Can confirm referring to the inertial moment and rotation time graph. (Pages 36 to 38)	 If the energy exceeds the allowable range, a suitable cushioning mechanism such as a shock absorber must be externally installed. 	Kinetic energy: E $E = \frac{1}{2} I \cdot \omega^{2}$ $\omega = \frac{2 \cdot \theta}{t}$ $E = \frac{1}{2} 0.003896 \times \left(\frac{2 \times \pi}{1.5}\right)^{2} = 0.03414 \text{ [J]}$ 0.03414 [J] < Allowable energy OK	
⇒P.34			
→P.34 Confirmation of Allowable L	oad		

Air consumption and required air flow capacity are calculated when necessary. \Rightarrow P.40

Calculation of Moment of Inertia


The moment of inertia is a value indicating the inertia of a rotating body, and expresses the degree to which the body is difficult to rotate, or difficult to stop.

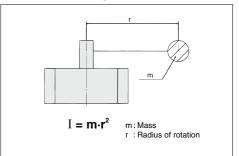
It is necessary to know the moment of inertia of the load in order to determine the value of necessary torque or kinetic energy when selecting a rotary actuator.


Moving the load with the actuator creates kinetic energy in the load. When stopping the moving load, it is necessary to absorb the kinetic energy of the load with a stopper or a shock absorber. The kinetic energy of the load can be calculated using the formulas shown in Figure 1 (for linear motion) and Figure 2 (for rotation motion).

In the case of the kinetic energy for linear motion, the formula (1) shows that when the velocity v is constant, it is proportional to the mass m. In the case of rotation motion, the formula (2) shows that when the angular velocity is constant, it is proportional to the moment of inertia.

Linear motion

Rotation motion

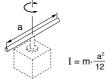


As the moment of inertia is proportional to the squares of the mass and the radius of rotation, even when the load mass is the same, the moment of inertia will be squared as the radius of rotation grows bigger. This will create greater kinetic energy, which may result in damage to the product.

When there is rotation motion, product selection should be based not on the load mass of the load, but on the moment of inertia.

Moment of Inertia Formula

The basic formula for obtaining a moment of inertia is shown below.

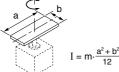

This formula represents the moment of inertia for the shaft with mass m, which is located at distance r from the shaft. For actual loads, the values of the moment of inertia are calculated depending on configurations, as shown on the following page.

⇒P.25 Equation table of moment of inertia ⇒P.26 and 27 Calculation example of moment of inertia ⇒P.28 and 29 Graph for calculating the moment of inertia

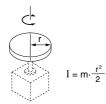
1 Equation Table of Moment of Inertia

1. Thin shaft

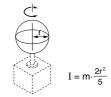
Position of rotational axis: Perpendicular to the shaft through the center of gravity


2.Thin rectangular plate

Position of rotational axis: Parallel to side b and through the center of gravity


3. Thin rectangular plate (Including Rectangular parallelepiped)

Position of rotational axis: Perpendicular to the plate through the center of gravity

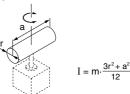

4. Round plate (Including column)

Position of rotational axis: Through the center axis

5. Solid sphere

Position of rotational axis: Through the center of diameter

I: Moment of inertia m: Load mass

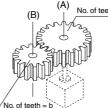

6. Thin round plate

Position of rotational axis: Through the center of diameter

7. Cylinder

Position of rotational axis: Through the center of diameter and gravity.

CRB2 -Z


8. When the rotational axis and load center of gravity are not consistent

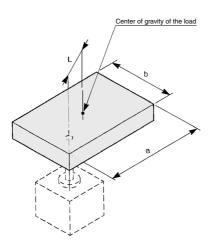
 $I = K + m \cdot L^2$

K: Moment of inertia around the load center of gravity 4. Round plate K = m.

4. Gear transmission

∕⊘SMC

No. of teeth = a


- 1 Find the moment of inertia IB for the rotation of shaft (B).
- 2. IB is converted to the moment of inertia IA for the rotation of the shaft (A).

 $I_A = \left(\frac{a}{b}\right)^2 \cdot I_B$

25

1-2 Calculation Example of Moment of Inertia

1 If the shaft is located at a desired point of the load:

Example: ① If the load is the thin rectangular plate:

Obtain the center of gravity of the load as
$$l_1$$
, a provisional shaft
 $a^2 + b^2$

 $I_1 = m \cdot \frac{u + v}{12}$

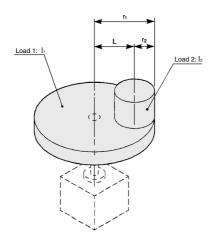
② Obtain the actual moment of inertia I2 around the shaft, with the premise that the mass of the load itself is concentrated in the load's center of gravity point.

 $I_2 = m \cdot L^2$

③ Obtain the actual moment of inertia I.

 $I = I_1 + I_2$

m: mass of the load

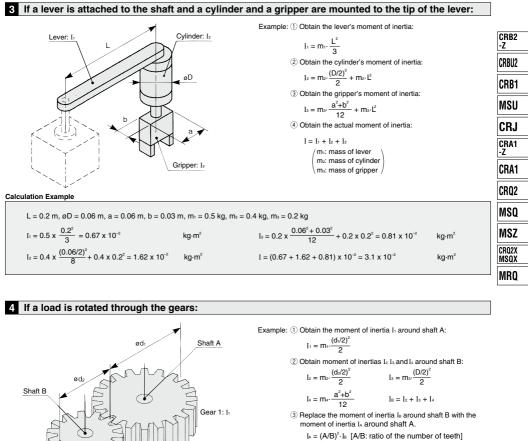

L : distance from the shaft to the load's

center of gravity

Calculation Example

$$\begin{aligned} a &= 0.2 \text{ m}, b = 0.1 \text{ m}, L = 0.05 \text{ m}, m = 1.5 \text{ kg} \\ I_1 &= 1.5 \text{ x} \; \frac{0.2^2 + 0.1^2}{12} = 6.25 \text{ x} \; 10^{-3} \qquad \text{kg} \cdot \text{m}^2 \\ I_2 &= 1.5 \text{ x} \; 0.05^2 = 3.75 \text{ x} \; 10^{-3} \qquad \text{kg} \cdot \text{m}^2 \\ I &= (6.25 + 3.75) \text{ x} \; 10^{-3} = 0.01 \qquad \text{kg} \cdot \text{m}^2 \end{aligned}$$

2 If the load is divided into multiple loads:



 $\begin{array}{l} \mbox{Example: } \widehat{\mathbb{O}} \mbox{ If the load is divided into the 2 cylinders:} \\ \left\{ \begin{array}{l} \mbox{The center of gravity of load 1 matches the shaft} \\ \mbox{The center of gravity of load 2 differs from the shaft} \end{array} \right\} \\ Obtain the moment of inertia of load 1: \\ I_1 = m_1 \cdot \frac{r_1^2}{2} \\ \hline \mbox{(2)} \mbox{Obtain the moment of inertia of load 2:} \\ I_2 = m_2 \cdot \frac{r_2^2}{2} + m_2 \cdot L^2 \\ \hline \mbox{(3)} \mbox{Obtain the actual moment of inertia I:} \\ I = I_1 + I_2 \end{array}$

- $\begin{pmatrix} m_1, m_2: mass of loads 1, and 2 \\ r_1, r_2: radius of loads 1, and 2 \end{pmatrix}$
- L: distance from the shaft to the center of gravity of load 2,

Calculation Example

$$\begin{split} m_1 &= 2.5 \ \text{kg}, \ m_2 &= 0.5 \ \text{kg}, \ r_1 &= 0.1 \ \text{m}, \ r_2 &= 0.02 \ \text{m}, \ L &= 0.08 \ \text{m} \\ \\ I_1 &= 2.5 \ x \ \frac{0.1^2}{2} &= 1.25 \ x \ 10^{-2} & \text{kg} \cdot \text{m}^2 \\ I_2 &= 0.5 \ x \ \frac{0.02^2}{2} &+ 0.5 \ x \ 0.08^2 &= 0.33 \ x \ 10^{-2} & \text{kg} \cdot \text{m}^2 \\ I &= (1.25 + 0.33) \ x \ 10^{-2} & \text{l} .58 \ x \ 10^{-2} & \text{kg} \cdot \text{m}^2 \end{split}$$

④ Obtain the actual moment of inertia:

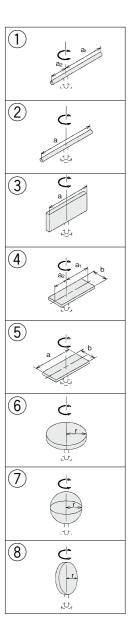
$$\begin{split} I &= I_1 + I_A \\ \begin{pmatrix} m_1: \text{ mass of gear 1} \\ m_2: \text{ mass of gear 2} \\ m_3: \text{ mass of cylinder} \\ m_4: \text{ mass of gripper} \end{pmatrix} \end{split}$$

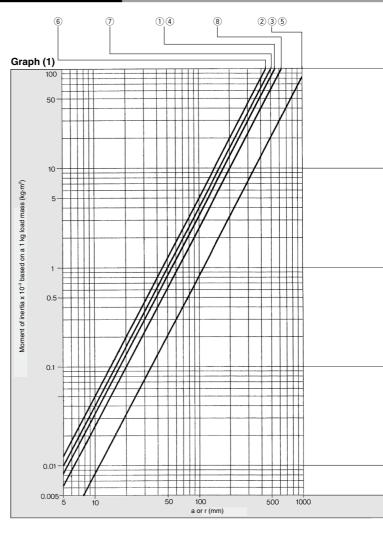
Calculation Example

Gear 2: Iz

øD

Cylinder: I₃

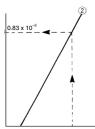

Gripper: I4


 $\begin{array}{l} d_1 = 0.1 \ m, \ d_2 = 0.05 \ m, \ D = 0.04 \ m, \ a = 0.04 \ m, \ b = 0.02 \ m \\ m_1 = 1 \ kg, \ m_2 = 0.4 \ kg, \ m_3 = 0.5 \ kg, \ m_4 = 0.2 \ kg, \ tooth \ count \ ratio = 2 \\ \end{array} \\ I_1 = 1 \ x \ \frac{(0.1/2)^2}{8} = 1.25 \ x \ 10^{-3} \ kgm^2 & I_1 = 0.2 \ x \ \frac{0.04^2 + 0.02^2}{12} = 0.03 \ x \ 10^{-3} \ kg m^2 \\ I_2 = 0.4 \ x \ \frac{(0.05/2)^2}{2} = 0.13 \ x \ 10^{-3} \ kg m^2 & I_1 = (0.13 + 0.1 + 0.03) \ x \ 10^{-3} = 0.26 \ x \ 10^{-3} \ kg m^2 \\ I_2 = 0.5 \ x \ \frac{(0.04/2)^2}{2} = 0.1 \ x \ 10^{-3} \ kg m^2 & I_1 = (1.25 + 1.04) & x \ 10^{-3} \ e.29 \ x \ 10^{-3} \ kg m^2 \\ \end{array}$

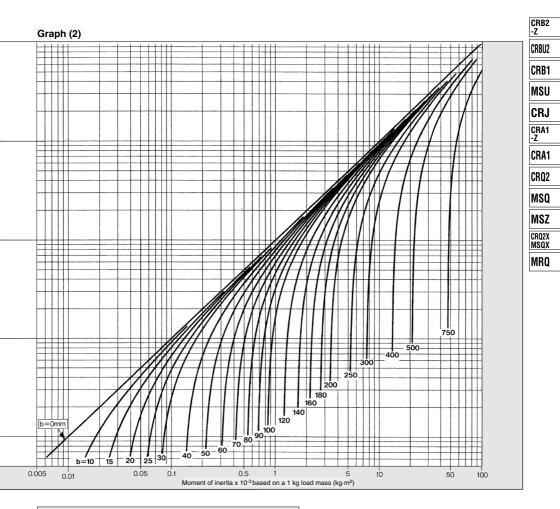
D-🗆

SMC

1-3 Graph for Calculating the Moment of Inertia


How to read the graph: only when the dimension of the load is "a" or "r"

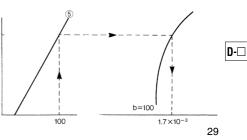
[Example] When the load shape is ②, a = 100 mm, and the load mass is 0.1 kg. In Graph (1), the point at which the vertical line of a = 100 mm and the line of the load shape ③ intersect indicates that the moment of inertia of the 1 kg mass is 0.83 x 10⁻³ kg m².


Because the mass of the load is 0.1 kg, the actual moment of inertia is 0.83 x 10^3 x 0.1= 0.083 x 10^{-3} kg·m².

(Note: If "a" is divided into "a1a2", the moment of inertia can be obtained by calculating them separately.)

SMC

28


SMC

How to read the graph: when the dimension of the load contains both "a" and "b".

[Example] When the load shape is (5), a = 100 mm, b = 100 mm, and the load mass is 0.5 kg.

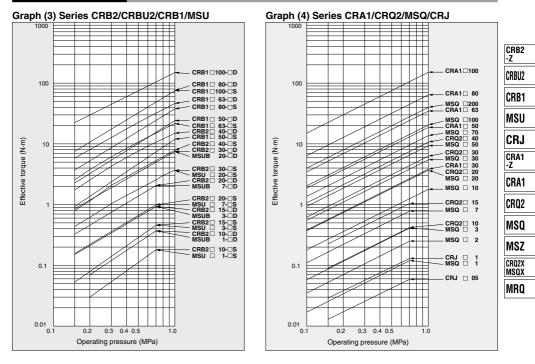
In Graph (1), obtain the point at which the vertical line of a = 100 mm and the line of the load shape (§) intersect. Move this intersection point to Graph (2), and the point at which it intersects with the curve of b = 100 mm indicates that the moment of inertia of the 1 kg mass is 1.7×10^3 kg·m².

Since the load mass is 0.5 kg, the actual moment of inertia is $1.7 \times 10^{-3} \times 0.5 = 0.85 \times 10^{-3} \text{ kg} \cdot \text{m}^2$.

2 Calculation of Required Torque

Q-1 Load Type

The calculation method of required torque varies depending on the load type. Obtain the required torque referring to the table below.


Load type								
Static load: Ts	Resistance load: Tf	Inertial load: Ta						
When the pressing force is necessary (clamp, etc.)	When friction force or gravity is applied to the rotation direction	When the load with inertia is rotated						
F	Gravity acts	The center of rotation and the center of gravity are corresponding						
<pre>Ts = F-L Ts: Static load (N·m) F : Clamp force (N) L : Distance from the center of rotation to clamp (m)</pre>	$ \begin{array}{l} \label{eq:second} When gravity acts to the rotation direction \\ \textbf{Tf} = \textbf{m}\textbf{\cdot}\textbf{g}\textbf{\cdot}\textbf{L} \\ \\ \mbox{When friction force acts to the rotation direction } \\ \textbf{Tf} = \mu\textbf{\cdot}\textbf{m}\textbf{\cdot}\textbf{g}\textbf{\cdot}\textbf{L} \\ \\ \mbox{Tf} : Resistance load (N-m) \\ m : Mass of load (kg) \\ g : Gravitational acceleration 9.8 (m/s^2) \\ \mbox{L} : Distance from the center of rotation to the gravity or friction force acting point (m) \\ \mu : Coefficient of friction \\ \end{array} $	Ta = I· $\dot{\omega}$ = I· $\frac{2\theta}{t^2}$ Ta: Inertial load (N·m) I : Moment of inertia (kg·m²) $\dot{\omega}$: Angular acceleration (rad/s²) θ : Rotating angle (rad) t : Rotation time (s)						
Required torque T = Ts	Required torque T = Tf x (3 to 5) Note 1)	Required torque T = Ta x 10 ^{Note 1)}						
Example 2) The load slips against the floor of *The necessary torque equals the total of th T = Tf x (3 to 5) + Ta x 10 • Non-resistance loads → Gravity or friction d Example 1) The axis of rotation is in a horize Example 2) The axis of rotation is in a horize	ontal (lateral) direction, and the gravity of the load are not the same. while rotating. e resistance load and inertial load. oes not apply in the rotation direction. ondicular (vertical) direction. ontal (lateral) direction, and the gravity of the load are the same.	In order to adjust the velocity, it is necessary to have a margin of adjustment for Tf and Ta.						

T = Ta x 10

⇒P.31 Effective torque

⇒P.31 and 32 Effective torque for each equipment

2-2 Effective Torque

2-3 Effective Torque for Each Equipment

Vane Style: Series CRB2 // CRBU2 // CRB1

Series CRB2	
	Series CRBU2
	•
Series CRB1	

0:	Versture	Operating pressure (MPa)										
Size	Vane type	0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	
10	Single vane	-	0.03	0.06	0.09	0.12	0.15	0.18	—	-	-	
10	Double vane	-	0.07	0.13	0.19	0.25	0.31	0.37	—	-	_	
15	Single vane	0.06	0.10	0.17	0.24	0.32	0.39	0.46	—	-	—	
15	Double vane	0.13	0.20	0.34	0.48	0.65	0.79	0.93	—	-	—	
20	Single vane	0.16	0.23	0.39	0.54	0.70	0.84	0.99	—	-	_	
20	Double vane	0.33	0.47	0.81	1.13	1.45	1.76	2.06	—	-	—	
30	Single vane	0.44	0.62	1.04	1.39	1.83	2.19	2.58	3.03	3.40	3.73	
30	Double vane	0.90	1.26	2.10	2.80	3.70	4.40	5.20	6.09	6.83	7.49	
40	Single vane	0.81	1.21	2.07	2.90	3.73	4.55	5.38	6.20	7.03	7.86	
40	Double vane	1.78	2.58	4.30	5.94	7.59	9.24	10.89	12.5	14.1	15.8	
50	Single vane	1.20	1.86	3.14	4.46	5.69	6.92	8.14	9.5	10.7	11.9	
50	Double vane	2.70	4.02	6.60	9.21	11.8	14.3	16.7	19.4	21.8	24.2	
63	Single vane	2.59	3.77	6.11	8.45	10.8	13.1	15.5	17.8	20.2	22.5	
63	Double vane	5.85	8.28	13.1	17.9	22.7	27.5	32.3	37.10	41.9	46.7	
80	Single vane	4.26	6.18	10.4	14.2	18.0	21.9	25.7	30.0	33.8	37.6	
80	Double vane	8.70	12.6	21.1	28.8	36.5	44.2	51.8	60.4	68.0	75.6	
100	Single vane	8.6	12.2	20.6	28.3	35.9	43.6	51.2	59.7	67.3	75	
100	Double vane	17.9	25.2	42.0	57.3	72.6	87.9	103	120	135	150	

SMC

D-🗆

(N·m)

2-3 Effective Torque for Each Equipment

Vane Style/Rotary Table: Series MSU

		Size	Va
10		- 1	Sin
10 - T	A Cara and		Dou
	1	3	Sin
		3	Dou
		7	Sin
Series MSUA	Series MSUB		Dou

Size	Vane type		Operating pressure (MPa)										
	valle type	0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0		
- 1	Single vane	-	0.03	0.06	0.09	0.11	0.14	0.17	-	-	-		
	Double vane	-	0.06	0.12	0.18	0.23	0.29	0.35	-	-	-		
3	Single vane	0.05	0.09	0.16	0.23	0.31	0.38	0.45	-	-	-		
	Double vane	0.11	0.18	0.32	0.46	0.62	0.77	0.91	-	-	-		
7	Single vane	0.14	0.21	0.37	0.52	0.69	0.83	0.98	-	-	-		
'	Double vane	0.29	0.44	0.78	1.10	1.42	1.74	2.04	-	-	-		
20	Single vane	0.40	0.58	0.99	1.38	1.78	2.19	2.58	2.99	3.39	3.73		
20	Double vane	0.86	1.22	2.04	2.82	3.63	4.43	5.22	6.04	6.83	7.49		
	o vano tvno is Sorios	MSUB	only										

(N·m)

(N·m)

(N·m)

(N·m)

* Double vane type is Series MSUB only.

SMC

Rack & Pinion Style: Series CRJ

							(N·m)
			Operatir	ng pressure	e (MPa)		
Size	0.15	0.2	0.3	0.4	0.5	0.6	0.7
05	0.013	0.017	0.026	0.034	0.042	0.050	0.059
1	0.029	0.038	0.057	0.076	0.095	0.11	0.13

Rack & Pinion Style: Series CRA1

Operating pressure (MPa) Size 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 30 0.38 0.76 1.14 1.53 1.91 2.29 2.67 3.05 3.44 3.82 50 1.85 3.71 5.57 7.43 9.27 11.2 13.0 14.9 16.7 18.5 63 3.44 6.88 10.4 13.8 17.2 20.6 24.0 27.5 31.0 34.4 80 6.34 12.7 19.0 25.3 31.7 38.0 44.4 50.7 57.0 63.4 100 14.9 29.7 44.6 59.4 74.3 89.1 104 119 133 149

Rack & Pinion Style: Series CRQ2

		Operating pressure (MPa)											
Size	0.10	0.15	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00		
10	-	0.09	0.12	0.18	0.24	0.30	0.36	0.42	-	-	-		
15	-	0.22	0.30	0.45	0.60	0.75	0.90	1.04	-	-	-		
20	0.37	0.55	0.73	1.10	1.47	1.84	2.20	2.57	2.93	3.29	3.66		
30	0.62	0.94	1.25	1.87	2.49	3.11	3.74	4.37	4.99	5.60	6.24		
40	1.06	1.59	2.11	3.18	4.24	5.30	6.36	7.43	8.48	9.54	10.6		

Rack & Pinion Style/Rotary Table: Series MSQ

		Operating pressure (MPa)										
Size	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00		
1	0.017	0.035	0.052	0.070	0.087	0.10	0.12	-	-	-		
2	0.035	0.071	0.11	0.14	0.18	0.21	0.25	-	-	-		
3	0.058	0.12	0.17	0.23	0.29	0.35	0.41	-	-	-		
7	0.11	0.22	0.33	0.45	0.56	0.67	0.78	-	-	-		
10	0.18	0.36	0.53	0.71	0.89	1.07	1.25	1.42	1.60	1.78		
20	0.37	0.73	1.10	1.47	1.84	2.20	2.57	2.93	3.29	3.66		
30	0.55	1.09	1.64	2.18	2.73	3.19	3.82	4.37	4.91	5.45		
50	0.93	1.85	2.78	3.71	4.64	5.57	6.50	7.43	8.35	9.28		
70	1.36	2.72	4.07	5.43	6.79	8.15	9.50	10.9	12.20	13.6		
100	2.03	4.05	6.08	8.11	10.1	12.2	14.2	16.2	18.20	20.3		
200	3.96	7.92	11.9	15.8	19.8	23.8	27.7	31.7	35.60	39.6		

OConfirmation of Rotation Time

Rotation time adjustment range is specified for each product for stable operation. Set the rotation time within the rotation time specified below.

Model	0.02	0.03	0.05	0.1	0.2	Ro 0.3		n time 0.5	adj	justm	nent	t range s/	/90° 2	3	4	5			10		20	30	CRB2 -Z
	0.02	0.03		ze: 10, 15, 20			<u></u>		+-+		+			+	+	+	+		+		20		CRBU2
CRB2				Size: 30										1	i	i	1			_	İ		VIIDOL
				5	Size: 40			Т							T	ī	T		- F				CRB1
CRB1	<u></u>				Size: 5	50,6	3, 80,	100	—		_		-									_	
2000			Siz	ze: 10, 15, 2		\rightarrow	<u> </u>	_ <u>i_</u>	Ļ	Ļ	Ļį.		1	1	1	1	1		1		1	1	MSU
CRBU2			4	Size: 30	Size: 40			4	+						+	+	-						
MSUD			+++		1, 3, 7, 20				$\frac{1}{1}$					1	1	1	1		-		1		CRJ
CRJ					Size: 0	J5, 1			++						-	-	1						CRA1
			4 4 4	444			Siz	ze: 30							1	1	1		Ľ				-Z
				444		Size: 63								CRA1									
CRA1	-+					Size: 80																	
			$\pm\pm\pm$			Size: 100								CRQ2									
									!	-		0, 63, 80,	100 (A	ir-hyd	ro s	pecif	icat	on)			1		Meo
CRQ2							ze: 10,						1		ļ	Ì	1						MSQ
Chuz							Size: 20		40	_	1		1	1	1	1	i				1		MSZ
	$ \rightarrow $		<u>i i i</u>	<u> </u>		Siz	ze: 1, 2	2,3						1	1	1	-				<u> </u>		
-		-+-	+++	444 <u>-</u>			10, 20, 30 ernal shock : 7, 10,				4		_		+	+	+						CRQ2X MSQX
MSQ			+++				: 7, 10, '0, 100, :				-			1	1	1	1				1		
Micia						0.10		Size:			0		-	+	+	+	1				+		MRQ
								Siz	ze: 1	00					Ì		Ì				1		-
								s	ize	: 200	0			1	Ì	i	i		i i		i.		

*: In case of basic type/with external shock absorber.

If the product is used in a low speed range which is outside the adjustment range, it may cause the stick-slip phenomenon, or the product to stick or stop.

D-□

SMC

Calculation of Kinetic Energy

Kinetic energy is generated when the load rotates. Kinetic energy applies on the product at the operating end as inertial force, and may cause the product to damage. In order to avoid this, the value of allowable kinetic energy is determined for each product. Find the kinetic energy of the load, and verify that it is within the allowable range for the product in use.

Kinetic Energy

Use the following formula to calculate the kinetic energy of the load.

$$\mathbf{E} = \frac{1}{2} \cdot \mathbf{I} \cdot \boldsymbol{\omega}^2$$

- E: Kinetic energy (J)
- I: Moment of inertia (kg·m²)
- ω: Angle speed (rad/s)

* For the MSU Series, add the values shown in the table below to the moment of inertia of the load when calculating.

Model	Additional value of moment of inertia; Io
MSU□ 1	2.5 x 10 ^{−6}
MSU 3	6.2 x 10 ⁻⁶
MSU 7	1.6 x 10 ^{−5}
MSU 20	2.8 x 10 ⁻⁵

Kinetic energy formula for Series MSU

$$\mathbf{E} = \frac{1}{2} \left(\mathbf{I} + \mathbf{I}_0 \right) \, \omega^2$$

Angle Speed

 $\omega = \frac{2\theta}{t}$

- ω: Angle speed (rad/s)
- θ: Rotation angle (rad/s)
- t: Rotation time (s)

t: Rotation time (s) I: Moment of inertia (kg·m²) θ: Rotation angle (rad) E: Kinetic energy (J)

However, for the air-hydro type, when the rotation time for 90° becomes longer than 2 seconds, use the following formula.

$$\omega = \frac{\theta}{t}$$

 \Rightarrow P.35 Allowable kinetic energy and rotation time adjustment range \Rightarrow P.36 to 38 Moment of inertia and rotation time

To find the rotation time when kinetic energy is within the allowable range for the product, use the following formula.

When the rotation angle is
$$\omega = \frac{2\theta}{t}$$
 When the rotation angle is $\omega = \frac{\theta}{t}$
 $t \ge \sqrt{\frac{2 \cdot I \cdot \theta^2}{E}}$ $t \ge \sqrt{\frac{I \cdot \theta^2}{2E}}$

Table (2) Allowable Kinetic Energy and Rotation Time Adjustment Range

4-1 Allowable Kinetic Energy and Rotation Time Adjustment Range

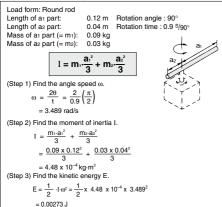

	Allowable kine	etic energy (J)	Adjustable range of			
Model	Without	With	rotation time safe in operation			
	rubber bumper	rubber bumper	(^S /90°)			
CRB2 🗆 10	0.00015	_				
CRB2 🗆 15	0.00025	0.001	0.03 to 0.3			
CRB2 🗆 20	0.00040	0.003				
CRB2 🗆 30	0.015	0.020	0.04 to 0.3			
CRB2 🗆 40	0.030	0.040	0.07 to 0.5			
CRB1 50	0.0	82				
CRB1 🗆 63	0.1	20	0.1 to 1			
CRB1 🗆 80	0.3	98	0.1 to 1			
CRB1 0100	0.6	00				
CRBU2 10	0.00015	—				
CRBU2 15	0.00025	0.001	0.03 to 0.3			
CRBU2 20	0.0004	0.003				
CRBU2 30	0.015	0.02	0.04 to 0.3			
CRBU2 40	0.030	0.040	0.07 to 0.5			
MSUA 1	0.0065	-				
MSUA 3	0.017	-				
MSUA 7	0.042	-				
MSUA 20	0.073	-	0.07 to 0.3			
MSUB 1	0.005	_	0.07 10 0.3			
MSUB 3	0.013	<u> </u>				
MSUB 7	0.032	-				
MSUB 20	0.056	<u> </u>				

Table (1b) Allowable Kinetic Energy and Rotation Time Adjustment Range of the Double Vane

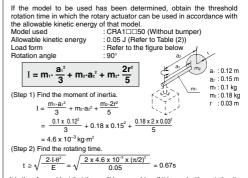
	Allowable kine	etic energy (J)	Adjustable range of		
Model	Without	With	rotation time safe in operation		
	rubber bumper	rubber bumper	(^s /90°)		
CRB2 10	0.0003	—			
CRB2 🗆 15	0.0005	0.0012	0.03 to 0.3		
CRB2 🗆 20	0.0007	0.0033			
CRB2 🗆 30	0.015	0.020	0.04 to 0.3		
CRB2 🗆 40	0.030	0.040	0.07 to 0.5		
CRB1 50		12			
CRB1 63	0.1				
CRB1 🗆 80	0.5	0.1 to 1			
CRB1 0100	0.8	311			
CRBU2 10	0.0003	_			
CRBU2 15	0.0005	0.0012	0.03 to 0.3		
CRBU2 20	0.0007	0.0033			
CRBU2 30	0.015	0.020	0.04 to 0.3		
CRBU2 40	0.030	0.040	0.07 to 0.5		
MSUB 1	0.005	—			
MSUB 3	0.013	—	0.071.00		
MSUB 7	0.032	—	0.07 to 0.3		
MSUB 20	0.056	—			

Note) Not using rubber bumper means that the rotary actuator is stopped in the middle of its rotation through the use of an external stopper. Note) Using a rubber bumper means that the rotary actuator is stopped at the respective rotation ends by using an internal stopper.

Calculation Example

	Allowable kine	tic energy (J)	Cushion		le range of		
Model	Without	With	angle		safe in operation		
	rubber bumper	rubber bumper	angle	(^s /	90°)		
CRJ 🗆 05	0.00025	-	_			CRB2	
	0.001 * 1	-	_	0.1	to 0.5	-Z	
CRJ 🗆 1	0.00040	-	_	0.1	10 0.5	-	
	0.002 * 1	-	_			CRBU2	
CRA1 30	0.010	-	_	0.2		UNDUZ	
CRA1 50	0.050	0.980*2		0.2		Ì	
CRA1 63	0.120	1.500*2	35°	0.2		CRB1	
CRA1 80	0.160	2.000*2	55	0.2		01121	
CRA1 100	0.540	2.900*2		0.2 to 5		MOLL	
CRQ2 10	0.00025	_	_	0.2 to 0.7		MSU	
CRQ2 15	0.00039	_	_	0.2	10 0.7	L	
CRQ2 20	0.025	0.120*2				CRJ	
CRQ2 30	0.048	0.250*2	40°	0.2 to 1		unj	
CRQ2 40	0.081	0.400*2				CRA1	
MSQ 🗆 1	0.001	_	_	0.2 to 0.7			
MSQ 🗆 2	0.0015	_	_			-Z	
MSQ 🗆 3	0.002	_	_			0044	
MSQ 🗆 7	0.006	-	_	0.2		CRA1	
		0.039*3	52°		0.2 to 0.7 *3	L	
MSQ 🗆 10	0.007	0.161*4	7.1°			CRQ2	
		0.231*5	8.6°	0.2 to 1		Unuz	
		0.116* ³	43°		0.2 to 0.7 *3		
MSQ 🗆 20	0.025	0.574*4	6.9°]		MSQ	
		1.060*5	8.0°	0.2 to 1			
		0.116* ³	40°		0.2 to 0.7 *3	1407	
MSQ 🗆 30	0.048	0.805*4	6.2°			MSZ	
		1.210*5	7.3°	0.2 to 1		Ļ	
		0.294*3	60°		0.2 to 0.7 *3	CRQ2X	
MSQ 🗆 50	0.081	1.310*4	9.6°]		MSQX	
		1.820*5	10.5°	0.2 to 1			
MSQB 70	0.24	1.100*3	71°	0.2 to 1.5		MRQ	
MSQB 100	0.32	1.600*3	62°	0.2 to 2	0.2 to 1 * 3		
MSQB 200	0.56	2.900*3	82°	0.2 to 2.5			

*1 Represents external stopper.


*2 When the cushion needle with air cushion is adjusted optimally.

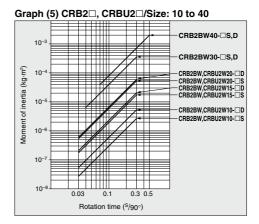
*3 Represents internal shock absorber.

*4 Represents external and low energy type shock absorber.

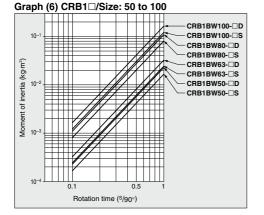
*5 Represents external and high energy type shock absorber.

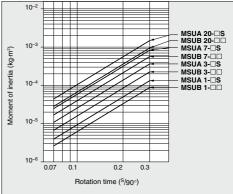
Calculation Example

It is therefore evident that there will be no problem if it is used with a rotation time of less than 0.67s. However, according to table 2, the maximum value of rotation time for stable operation is 2s. Thus, the rotation time should be within the range of 0.67 < t < 2.

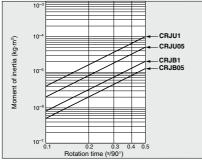

SMC

4-2 Moment of Inertia and Rotation Time

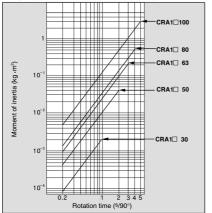

How to read the graph

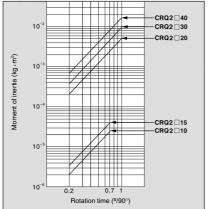

- Example 1) When there are constraints for the moment of inertia of load and rotation time. From "Graph (5)", to operate at the load moment of inertia 1 x 10^{-4} kg·m² and at the rotation time setting of 0.3 \$/90°, the models will be CRB□30-□S and CRB□30-□D
- Example 2) When there are constraints for the moment of inertia of load, but not for rotation time. From "Graph (6)", to operate at the load moment of inertia 1 x 10⁻² kg m² CRB1□50-□S will be 0.8 to 1 S/90° CRB1 80-S will be 0.35 to 1 \$/90 CRB1□100-□S will be 0.29 to 1 S/90°
- [Remarks] As for the rotation times in "Graphs (5) to (15)", the lines in the graph indicate the adjustable speed ranges. If the speed is adjusted towards the low-speed end beyond the range of the line, it could cause the actuator to stick, or, in the case of the vane style, it could stop its operation.

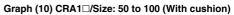
<Vane style: Series CRB2/CRBU2/CRB1/MSU>

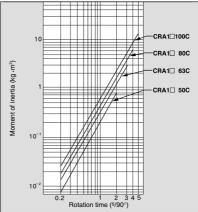


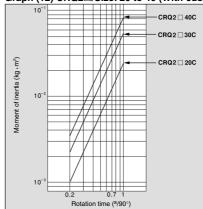
Graph (7) MSU //Size: 1 to 20



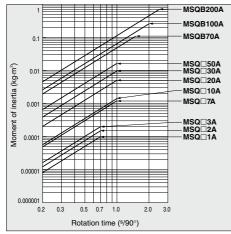

<Rack & pinion style: Series CRJ/CRA1> Graph (8) CRJ□/Size: 05, 1



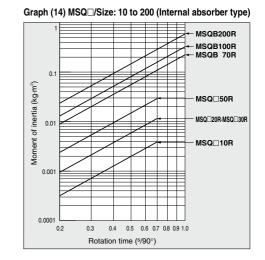

Graph (9) CRA1 //Size: 30 to 100 (Without cushion)



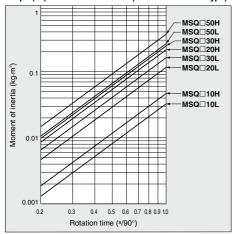
Graph (12) CRQ2 /Size: 20 to 40 (With cushion)



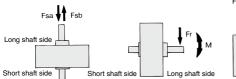
SMC


CRB2 -Z
CRBU2
CRB1
MSU
CRJ
CRA1 -Z
CRA1
CRQ2
MSQ
MSZ
CRQ2X MSQX
MRQ

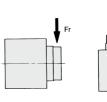
D-🗆


4-2 Moment of Inertia and Rotation Time

Graph (13) MSQ /Size: 10 to 200 (Adjust bolt type)



Graph (15) MSQ□/Size: 10 to 50 (External absorber type)



G Confirmation of Allowable Load

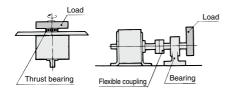
Provided that a dynamic load is not generated, a load in the axial direction can be applied up to the value that is indicated in the table below. However, applications in which the load is applied directly to the shaft should be avoided as much as possible.

CRB2 -Z CRBU2 CRB1 MSU CRJ CRJ CRA1 CRA1 CRA1 CR02 MSQ MSQ MSZ CR02X MSQX

MRQ

м

Vane Style


Vane Style (Single, Double)

Series	Model		Load d	irection	
Series	woder	Fsa (N)	Fsb (N)	Fr (N)	M (N·m)
	CRB2 🗆 10	9.8	9.8	14.7	0.13
	CRB2 🗆 15	9.8	9.8	14.7	0.17
	CRB2 🗆 20	19.6	19.6	24.5	0.33
	CRB2 🗆 30	24.5	24.5	29.4	0.42
CRB	CRB2 🗆 40	40	40	60	1.02
	CRB1 🗆 50	196	196	245	8.09
	CRB1 🗆 63	340	340	390	14.04
	CRB1 🗆 80	490	490	490	20.09
	CRB1 0100	539	539	588	30.28
	CRBU2 10	9.8	9.8	14.7	0.13
	CRBU2 15	9.8	9.8	14.7	0.17
CRBU2	CRBU2 20	19.6	19.6	24.5	0.33
	CRBU2 30	24.5	24.5	29.4	0.42
	CRBU2 40	40	40	60	1.02

Vane Style (Single, Double)

Series	Model	Load direction							
Series	Iviodei	Fsa (N)	Fsb (N)	Fr (N)	M (N·m)				
MSUA	MSUA 1	15	15	20	0.3				
	MSUA 3	30	30	40	0.7				
	MSUA 7	60	60	50	0.9				
	MSUA20	80	80	60	2.9				
	MSUB 1	10	15	20	0.3				
MSUB	MSUB 3	15	30	40	0.7				
WISOD	MSUB 7	30	60	50	0.9				
	MSUB20	40	80	60	2.9				

Provided that a dynamic load is not generated, a load that is within the allowable radial/thrust load can be applied. However, applications in which the load is applied directly to the shaft should be avoided as much as possible. The methods such as those described below are recommended to prevent the load from being applied directly to the shaft in order to ensure a proper operating condition.

Back & Pinion Style (Single rack)

	Fillion Styl	e (Siligi	e rack)			M			
Series	Model	Load direction							
	woder	Fsa (N)	Fsb (N)	Fr (N)	M (N·m)				
CRJ	CRJ 05	20	20	25	0.26	M			
	CRJ□ 1	25	25	30	0.32	CDI			

Rack & Pinion Style

Rack & Pinion Style (Single rack)

Series	Model	Load direction								
Series	woder	Fsa (N)	Fsa (N) Fsb (N)		M (N·m)					
CRA1	CRA1 30	29.4	29.4	29.4	0.44					
	CRA1 50	490	196	196	3.63					
	CRA1 63	588	196	294	6.17					
	CRA1 80	882	196	392	9.80					
	CRA1□100	980	196	588	19.11					

Rack & Pinion Style (Double rack)

Series	Model	Load direction							
Selles	Woder	Fsa (N)	Fsb (N)	Fr (N)	M (N·m)				
	CRQ2B□10	15.7	7.8	14.7	0.21				
	CRQ2B□15	19.6	9.8	19.6	0.32				
CRQ2	CRQ2B 20	49	29.4	49	0.96				
	CRQ2B 30	98	49	78	1.60				
	CRQ2B□40	108	59	98	2.01				

Rack & Pinion Style (Double rack)

Series	Model		Load di	rection					
Series	IVIOUEI	Fsa (N)	Fsb (N)	Fr (N)	M (N·m)				
	MSQA 1□	41	41	31	0.84				
	MSQA 2□	45	45	32	1.2				
	MSQA 3□	48	48	33	1.6				
MSQA	MSQA 7	71	71	54	2.2				
	MSQA 10	107	74	86	2.9				
	MSQA 20	197	137	166	4.8				
	MSQA 30	398	197	233	6.4				
	MSQA 50	517	296	378	12.0				
	MSQB 1	41	41	31	0.56				
	MSQB 2	45	45	32	0.82				
	MSQB 3	48	48	33	1.1				
	MSQB 7	71	71	54	1.5				
	MSQB 10	78	74	78	2.4				
MSQB	MSQB 20	137	137	147	4.0				
	MSQB 30□	363	197	196	5.3				
	MSQB 50	451	296	314	9.7				
	MSQB 70	476	296	333	12.0				
	MSQB100□	708	493	390	18.0				
	MSQB200	1009	740	543	25.0				

D-🗆

G Calculation of Air Consumption and Required Air Flow Capacity

Air consumption is the volume of air which is expended by the rotary actuator's reciprocal operation inside the actuator and in the piping between the actuator and the switching valve, etc. This is necessary for selection of a compressor and for calculation of its running cost. Required air volume is the air volume necessary to make a rotary actuator operate at a required speed. It requires calculation when selecting the upstream piping diameter from the switching valve and air line equipment.

* To facilitate your calculation, Tables (1) to (5) provide the air consumption volume (QcR) that is required each time an individual rotary actuator makes a reciprocal movement.

1. Air consumption volume

Formula

$ \begin{array}{l} \mbox{Regarding QCR: With vane style sizes 10 to 40, use formula (1) I the internal volume varies when ports A and pressurized. For vane style sizes 50 to 100, as for the rack and pinion style, use formula (2). \\ \mbox{QCR} = (VA + VB) \times \left(\frac{P + 0.1}{0.1} \right) \times 10^{-3} \\ \mbox{QcR} = 2 \times VA \times \left(\frac{P + 0.1}{0.1} \right) \times 10^{-3} \\ \mbox{QcP} = 2 \times a \times L \times \left(\frac{P}{0.1} \right) \times 10^{-6} \\ \mbox{QcP} = 2 \times a \times L \times \left(\frac{P}{0.1} \right) \times 10^{-6} \\ \mbox{QcP} = QCR + QCP \\ \end{array} $	d B are well as (1) (2) (3)
QCR = Amount of air consumption of rotary actuator	[L(ANR)]
QCP = Amount of air consumption of tube or piping	[L(ANR)]
VA = Inner volume of the rotary actuator (when pressurized from A port)	[cm ³]
V_B = Inner volume of the rotary actuator (when pressurized from B port)	[cm ³]
P = Operating pressure	[MPa]

L = Length of piping	[mm]
a = Inner sectional area of piping	[mm ²]

Qc = Amount of air consumption required for one cycle of the rotary actuator [L(ANR)]

To select a compressor, it is important to select one that has plenty of margin to accommodate the total air volume that is consumed by the pneumatic actuators that are located downstream. The total air consumption volume is affected by the leakage in the tube, the consumption in the drain valves and pilot valves, as well as by the reduction in air volume due to reduced temperature.

Formula

$$Q_{c2} = Q_c x n x No. of actuators x Space rate \dots(5)$$

 Qc_2 = Amount of air from a compressor n = Actuator reciprocations per minute

Safety factor: from 1.5

2. Required air flow capacity

Formula	
Qr: Make use of (6)(7) formula for vane type, and (7) for rack and pinic	n type.
$Q_{r} = \left\{ V_{B} x \left(\frac{P + 0.1}{0.1} \right) x \ 10^{-3} + a x L x \left(\frac{P}{0.1} \right) x \ 10^{-6} \right\} x \ \frac{60}{t} \dots$	(6)
$Q_{r} = \left\{ V_{A} x \left(\frac{P + 0.1}{0.1} \right) x \ 10^{-s} + a x L x \left(\frac{P}{0.1} \right) x \ 10^{-s} \right\} x \ \frac{60}{t} \dots$	(7)
Qr=Consumed air volume for rotary actuator [L/mi	n(ANR)]
VA = Inner volume of the rotary actuator (when pressurized from A port)	[cm ³]
$V_B =$ Inner volume of the rotary actuator (when pressurized from B port)	[cm ³]
P = Operating pressure	[MPa]
L = Length of piping	[mm]
a = Inner sectional area of piping	[mm ²]
t=Total time for rotation	[S]

Internal Cross Section of Tubing and Steel Piping

Nominal	O.D. (mm)	I.D. (mm)	Internal cross section a (mm ²)
T 🗆 0425	4	2.5	4.9
T 🗆 0604	6	4	12.6
TU 0805	8	5	19.6
T 🗆 0806	8	6	28.3
1/8B	—	6.5	33.2
T 🗆 1075	10	7.5	44.2
TU 1208	12	8	50.3
T🗆 1209	12	9	63.6
1/4B	—	9.2	66.5
TS 1612	16	12	113
3/8B	—	12.7	127
T 🗆 1613	16	13	133
1/2B	—	16.1	204
3/4B	_	21.6	366
1B	_	27.6	598

 \Rightarrow P.41 and 42 Inner volume and air consumption \Rightarrow P.43 and 44 Air consumption calculation graph

SMC

[L/min (ANR)]

()-1 Inner Volume and Air Consumption

Vane	Size 10	(degree) 90	Press. VA port	Press. VB port										
-	10				0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
-	10		0.6	1.0	_	0.005	0.006	0.008	0.010	0.011	0.013	-		
-		180	1.2	1.2	-	0.007	0.010	0.012	0.014	0.017	0.019	-	_	_
-		270	1.5	1.5	0.000	0.009	0.012	0.015	0.018	0.021	0.024	-	-	_
-		<u>90</u> 180	1.0	1.5 2.9	0.006	0.008	0.010	0.013	0.015	0.018	0.020	_	_	
F	15	270	2.9 3.7	3.7	0.013	0.022	0.023	0.029	0.035	0.041	0.040			_
		90	3.6	4.8	0.013	0.022	0.034	0.042	0.050	0.052	0.067	-	_	_
	20	180	6.1	6.1	0.031	0.037	0.049	0.061	0.073	0.085	0.098	_	_	_
-	20	270	7.9	7.9	0.040	0.047	0.063	0.079	0.095	0.111	0.126	-	_	-
		90	8.5	11.3	0.050	0.059	0.079	0.099	0.119	0.139	0.158	0.178	0.198	0.218
	30	180	15	15	0.075	0.090	0.120	0.150	0.180	0.210	0.240	0.270	0.300	0.330
L		270	20.2	20.2	0.101	0.121	0.162	0.202	0.242	0.283	0.323	0.364	0.404	0.444
		90	21	25	0.115	0.138	0.184	0.230	0.276	0.322	0.368	0.414	0.460	0.506
	40	180	31.5	31.5	0.158	0.189	0.252	0.315	0.378	0.441	0.504	0.567	0.630	0.693
		270	41	41	0.205	0.246	0.328	0.410	0.492	0.574	0.656	0.738	0.820	0.902
		90	30	30	0.150	0.180	0.240	0.300	0.360	0.420	0.480	0.540	0.600	0.660
		100	32	32	0.160	0.192	0.256	0.320	0.384	0.448	0.512	0.576	0.640	0.704
Single vane	50	180	49	49	0.245	0.294	0.392	0.490	0.588	0.686	0.784	0.882	0.980	1.078
		190	51	51	0.255	0.306	0.408	0.510	0.612	0.714	0.816	0.918	1.020	1.122
		270	66	66	0.330	0.396	0.528	0.660	0.792	0.924	1.056	1.188	1.320	1.452
-		280 90	68	68 70	0.340	0.408	0.544	0.000	0.840	0.952	1.120	1.224	1.400	1.540
		100	70 73	70	0.365	0.420	0.584	0.730	0.840	1.022	1.120	1.314	1.460	1.606
		180	94	94	0.470	0.564	0.752	0.940	1.128	1.316	1.504	1.692	1.880	2.068
	63	190	97	97	0.485	0.582	0.776	0.970	1.164	1.358	1.552	1.746	1.940	2.134
		270	118	118	0.590	0.708	0.944	1.180	1.416	1.652	1.888	2.124	2.360	2.596
		280	121	121	0.605	0.726	0.968	1.210	1.452	1.694	1.936	2.178	2.420	2.662
-		90	88	88	0.440	0.528	0.704	0.880	1.056	1.232	1.408	1.584	1.760	1.936
		100	93	93	0.465	0.558	0.744	0.930	1.116	1.302	1.488	1.674	1.860	2.046
	~~	180	138	138	0.690	0.828	1.104	1.380	1.656	1.932	2.208	2.484	2.760	3.036
	80	190	143	143	0.715	0.858	1.144	1.430	1.716	2.002	2.288	2.574	2.860	3.146
		270	188	188	0.940	1.128	1.504	1.880	2.256	2.632	3.008	3.384	3.760	4.136
L		280	193	193	0.965	1.158	1.544	1.930	2.316	2.702	3.088	3.474	3.860	4.246
		90	186	186	0.930	1.116	1.488	1.860	2.232	2.604	2.976	3.348	3.720	4.092
		100	197	197	0.985	1.182	1.576	1.970	2.364	2.758	3.152	3.546	3.940	4.334
	100	180	281	281	1.405	1.686	2.248	2.810	3.372	3.934	4.496	5.058	5.620	6.182
		190	292	292	1.460	1.752	2.336	2.920	3.504	4.088	4.672	5.256	5.840	6.424
		270	376	376	1.880	2.256	3.008	3.760	4.512	5.264 5.418	6.016	6.768	7.520	8.272
		280	387	387	1.935	2.322	3.096	3.870 0.010	4.644	0.014	6.192 0.016	6.966	7.740	8.514
	10	<u>90</u> 100	1.0	1.0	_	0.006	0.008	0.010	0.012	0.014	0.016	_	_	_
-		90	2.6	2.6	0.013	0.007	0.009	0.026	0.013	0.015	0.018	-	_	_
	15	100	2.0	2.0	0.013	0.016	0.021	0.020	0.031	0.038	0.042	=	_	_
		90	5.6	5.6	0.028	0.034	0.022	0.027	0.067	0.078	0.045	_	_	_
	20	100	5.7	5.7	0.029	0.034	0.046	0.057	0.068	0.080	0.091	- 1	_	_
		90	14.4	14.4	0.072	0.086	0.115	0.144	0.173	0.202	0.230	0.259	0.288	0.317
	30	100	14.5	14.5	0.073	0.087	0.116	0.145	0.174	0.203	0.232	0.261	0.290	0.319
	40	90	33	33	0.165	0.198	0.264	0.330	0.396	0.462	0.528	0.594	0.660	0.726
ouble vane	40	100	34	34	0.170	0.204	0.272	0.340	0.408	0.476	0.544	0.612	0.680	0.748
	50	90	48	48	0.240	0.288	0.384	0.480	0.576	0.672	0.768	0.864	0.960	1.056
	50	100	52	52	0.260	0.312	0.416	0.520	0.624	0.728	0.832	0.936	1.040	1.144
		90	98	98	0.490	0.588	0.784	0.980	1.176	1.372	1.568	1.764	1.960	2.156
	63	100	104	104	0.520	0.624	0.832	1.040	1.248	1.456	1.664	1.872	2.080	2.288
		90	136	136	0.680	0.816	1.088	1.360	1.632	1.904	2.176	2.448	2.720	2.992
	80	100	146	146	0.730	0.876	1.168	1.460	1.752	2.044	2.336	2.628	2.920	3.212
	100	<u>90</u> 100	272 294	272 294	1.360	1.632	2.176	2.720	3.264 3.528	3.808	4.352	4.896 5.292	5.440 5.880	5.984 6.468

Table (2) Vane Style Rotary Table: Series MSU

Table (2)	Table (2) Vane Style Rotary Table: Series MSU (L(ANR))														
Vane	Size	Rotation	Inner volu	Inner volume (cm ³)		Operating pressure (MPa)									
varie	Size	(degree)	Press. VA port	Press. VB port	0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	
	1	90	0.8	1.3	—	0.006	0.008	0.011	0.013	0.015	0.017	-	_	_	
		180	1.3	1.3	—	0.008	0.010	0.013	0.016	0.018	0.021	-		—	
	3	90	1.9	3.1	0.013	0.015	0.020	0.025	0.030	0.035	0.040	_	_	—	
Single vane		180	3.1	3.1	0.016	0.019	0.025	0.031	0.037	0.043	0.050			_	D-□
	7	90	4.0	6.6	0.027	0.032	0.042	0.053	0.064	0.074	0.085	_	_	_	ם-טן
		180	6.6	6.6	0.033	0.040	0.053	0.066	0.079	0.092	0.106			—	
	20	90	10.1	16.8	0.067	0.081	0.108	0.135	0.161	0.188	0.215	0.242	0.269	0.296	
	20	180	16.8	16.8	0.084	0.101	0.134	0.168	0.202	0.235	0.269	0.302	0.336	0.370	
Double	1	90	1.1	1.1	—	0.007	0.009	0.011	0.013	0.015	0.018	I		-	
	3	90	2.7	2.7	0.014	0.016	0.022	0.027	0.032	0.038	0.043	_	_	—	
vane (MSUB only)	7	90	5.7	5.7	0.029	0.034	0.046	0.057	0.068	0.080	0.091	_		_	
(mood only)	20	90	14.5	14.5	0.073	0.087	0.116	0.145	0.174	0.203	0.232	0.261	0.290	0.319	

G-1 Inner Volume and Air Consumption

Table (3) Rack & Pinion Style: Series CRJ (L(ANR))										
Size	Detetion (degree)	Volume V _A (cm ³)			Opera	ating pressure ((MPa)			
Size	Hotation (degree)	volume v _A (cm)	0.15	0.2	0.3	0.4	0.5	0.6	0.7	
05	90	0.15	0.00074	0.00089	0.0012	0.0015	0.0018	0.0021	0.0024	
05	180	0.31	0.0015	0.0018	0.0025	0.0031	0.0037	0.0043	0.0049	
1	90	0.33	0.0016	0.0020	0.0026	0.0033	0.0039	0.0046	0.0052	
	180	0.66	0.0033	0.0039	0.0052	0.0065	0.0078	0.0091	0.010	

(L(ANR))

(L(ANR))

Table (4) Rack & Pinion Style: Series CRA1

Size	Rotation (degree)	Volume V _A (cm ³)	Operating pressure (MPa)									
			0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
30	90	7.4	0.030	0.044	0.059	0.074	0.089	0.104	0.118	0.133	0.148	0.163
	180	14	0.056	0.084	0.112	0.140	0.168	0.196	0.224	0.252	0.280	0.308
50	90	32	0.128	0.192	0.256	0.320	0.384	0.448	0.512	0.576	0.640	0.704
	100	36	0.144	0.216	0.288	0.360	0.432	0.504	0.576	0.648	0.720	0.792
	180	65	0.260	0.390	0.520	0.650	0.780	0.910	1.040	1.170	1.300	1.430
	190	68	0.272	0.408	0.544	0.680	0.816	0.952	1.088	1.224	1.360	1.496
	90	60	0.240	0.360	0.480	0.600	0.720	0.840	0.960	1.080	1.200	1.320
63	100	67	0.268	0.402	0.536	0.670	0.804	0.938	1.072	1.206	1.340	1.474
	180	120	0.480	0.720	0.960	1.200	1.440	1.680	1.920	2.160	2.400	2.640
	190	127	0.508	0.762	1.016	1.270	1.524	1.778	2.032	2.286	2.540	2.794
	90	111	0.444	0.666	0.888	1.110	1.332	1.554	1.776	1.998	2.220	2.442
80	100	123	0.492	0.738	0.984	1.230	1.476	1.722	1.968	2.214	2.460	2.706
	180	221	0.884	1.326	1.768	2.210	2.652	3.094	3.536	3.978	4.420	4.862
	190	233	0.932	1.398	1.864	2.330	2.796	3.262	3.728	4.194	4.660	5.126
100	90	259	1.036	1.554	2.072	2.590	3.108	3.626	4.144	4.662	5.180	5.698
	100	288	1.152	1.728	2.304	2.880	3.456	4.032	4.608	5.184	5.760	6.336
	180	518	2.072	3.108	4.144	5.180	6.216	7.252	8.288	9.324	10.36	11.396
	190	547	2.188	3.282	4.376	5.470	6.564	7.658	8.752	9.846	10.940	12.034

Table (5) Rack & Pinion Style: Series CRQ2

Table (5) Rack & Pinion Style: Series CRQ2											(L(ANR))		
Size	Rotation Volume (degree) V _A (cm ³)	Volume	Operating pressure (MPa)										
		0.1	0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	
10	90	1.2	_	0.006	0.007	0.009	0.012	0.014	0.016	0.018	_	-	_
	180	2.2	_	0.011	0.013	0.018	0.022	0.026	0.031	0.035	—	—	-
	360	4.3	_	0.021	0.026	0.034	0.043	0.051	0.060	0.068	_	_	_
	90	2.9	_	0.015	0.017	0.023	0.029	0.035	0.041	0.046	—	_	_
15	180	5.5		0.028	0.033	0.044	0.055	0.066	0.077	0.088	—	—	_
	360	10.7	_	0.023	0.064	0.086	0.107	0.129	0.193	0.172	—	_	_
	90	7.1	0.028	0.036	0.043	0.057	0.071	0.085	0.099	0.114	0.128	0.142	0.156
20	180	13.5	0.054	0.068	0.081	0.108	0.135	0.162	0.189	0.216	0.243	0.270	0.297
	360	26.3	0.105	0.131	0.158	0.210	0.263	0.316	0.368	0.421	0.473	0.526	0.578
	90	12.1	0.048	0.060	0.073	0.097	0.121	0.145	0.169	0.193	0.218	0.242	0.266
30	180	23.0	0.092	0.115	0.138	0.184	0.230	0.276	0.322	0.368	0.413	0.459	0.505
	360	44.7	0.179	0.224	0.268	0.358	0.447	0.537	0.626	0.716	0.805	0.895	0.984
40	90	20.6	0.082	0.103	0.123	0.164	0.206	0.247	0.288	0.329	0.370	0.411	0.452
	180	39.1	0.156	0.195	0.234	0.313	0.391	0.469	0.547	0.625	0.703	0.781	0.859
	360	76.1	0.304	0.380	0.456	0.609	0.761	0.913	1.07	1.22	1.37	1.52	1.67

Table (6) Rack & Pinion Style/Rotary Table: Series MSQ

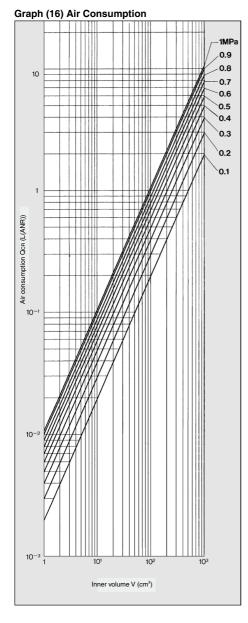
Operating pressure (MPa) Rotation Volume Size (degree) VA (cm³) 0.4 0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 1.0 1 0.66 0.0026 0.0039 0.0052 0.0065 0.0078 0.0091 0.010 2 0.0077 0.015 0.0052 0.010 0.013 0.018 1.3 0.021 _ _ -3 2.2 0.0087 0.013 0.017 0.022 0.026 0.030 0.035 42 0.042 0.050 7 0.017 0.025 0.033 0.058 0.066 10 6.6 0.026 0.040 0.053 0.066 0.079 0.092 0.106 0.119 0.132 0.145 20 190° 13.5 0.054 0.081 0.108 0.135 0.162 0.189 0.216 0.243 0.270 0.297 0.080 0.121 0.161 0.201 0.241 0.281 0.322 0.362 0.402 0.442 30 20.1 50 34.1 0.136 0.205 0.273 0.341 0.409 0.477 0.546 0.614 0.682 0.750 70 50.0 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000 1.100 100 74.7 0.299 0.448 0.598 0.747 0.896 1.046 1.195 1.345 1.494 1.643 1.167 2.043 200 145.9 0.584 0.875 1.459 1.751 2.334 2.626 2.918 3.210

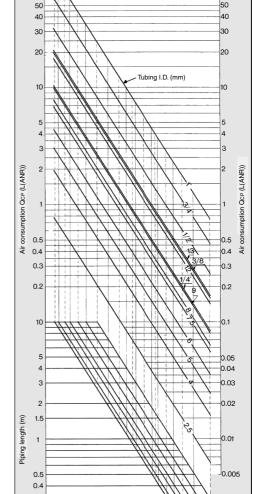
42

O-2 Air Consumption Calculation Graph

- Step 1 Using Graph (16), air consumption volume of the rotary actuator is obtained. From the point of intersection between the internal volume and the operating pressure (slanted line) and then looking to the side (left side) direction, the air consumption volume for 1 cycle operation of a rotary actuator is obtained. Step 2 Using Graph (17), air consumption volume of tubing or steel piping is obtainted. (1) First determine the point of intersection between the operating pressure (slanted line) and the piping length, and then go up the vertical line perpendicularly from there. (2) From the point of intersection of an operating piping tube diameter (slanted line), then look to the side (left or right) to obtain the required air consumption volume for piping. Step 3 Total air consumption volume per minute is obtained as follows:
 - (Air consumption volume of a rotary actuator [unit: L (ANR)] + Tubing or steel piping's air consumption volume) x Cycle times per minute x Number of rotary actuators = Total air consumption volume
- Example) What is the air consumption volume for 10 units of a CRQ2BS40-90 to actuate by operating pressure 0.5 MPa for one minute ..? (Distance between actuator and switching valve is the internal diameter 6 mm tubing with 2 m piping.)
 - 1. Operating pressure 0.5 MPa → Internal volume of CRQ2BS40-90 40 cm³ → Air consumption volume 0.23 L (ANR)
 - 2. Operating pressure 0.5 MPa \rightarrow Piping length 2 m \rightarrow Internal diameter 6 mm → Air consumption volume 0.56 L (ANR)
 - 3. Total air consumption volume = (0.23 + 0.56) x 5 x 10 = 39.5 L/min (ANR)

Inner Volume: Rack & Pinion Style


1 cycle (cm³)


Model	Rotation angle								
wodei	90°	100°	180°	190°	360°				
CRJ 🗆 05	0.3	0.34	0.62	0.66	_				
CRJ 🗆 1	0.66	0.74	1.32	1.4	-				
CRA1 30	14.8	-	28	-	_				
CRA1 50	64	72	130	136	—				
CRA1 63	120	134	240	254	-				
CRA1 80	222	246	442	466	—				
CRA1□100	518	576	1040	1090	—				
CRQ2 10	2.4	—	4.4	—	8.6				
CRQ2 15	3.8	-	11	_	21.4				
CRQ2 20	14.2	—	27	—	52.6				
CRQ2 30	24.2	-	46	—	89.4				
CRQ2 40	41.2	_	78.2	_	152				
MSQ 🗆 1	—	—	—	1.3	-				
MSQ 🗆 2	—	-	—	2.7	_				
MSQ 🗆 3	-	-	—	4.4	-				
MSQ 🗆 7	—	—	—	8.4	—				
MSQ 🗆 10	_	-	_	13.1	_				
MSQ 🗆 20	_	_	_	27.0	_				
MSQ 🗆 30	_	_	_	40.2	_				
MSQ 🗆 50	_	-	—	68.4	_				
MSQB 70	-	-	—	100	_				
MSQB 100	_	-	_	149	_				
MSQB 200	_	_	_	292	_				

Inner Volume: Vane Style 1 cycle (cm ³)									
Maslal									
Model	90°	100°	180°	190°	270°	280°			
CRB 🗆 10-🗆 S	1.6	-	2.4	_	3	_	CRB2		
CRB 🗆 15-🗆 S	2.5	_	5.8	—	7.4	_	-Z		
CRB □ 20-□S	8.4	-	12.2	_	15.8	_	CRBU2		
CRB □ 30-□S	19.8	-	30	—	40	_	•		
CRB □ 40-□S	25	_	31.5	_	41	_	CRB1		
CRB1□ 50-□S	60	64	98	102	132	136	•		
CRB1□ 63-□S	70	73	94	97	118	121	MSU		
CRB1 80- S	176	186	276	286	376	386			
CRB1□100-□S	372	394	562	584	752	774	CRJ		
MSU 1-□S	2.1	_	2.6	_	_	_			
MSU 3-□S	5.0	-	6.2	_	_	_	CRA1 -Z		
MSU 7-□S	10.6	-	13.2	_	_	_	-2		
MSU 20-□S	26.9	-	33.6	_	_	_	CRA1		
CRB 10-□D	2	2.2	-	_	_	_			
CRB 15-DD	5.2	5.4	_	_	_		CRQ2		
CRB 20-DD	11.2	11.4	-	_	_	_			
CRB 30-DD	28.8	29	_		_		MSQ		
CRB 40-□D	33	34	-	-	-	_			
CRB1 50-D	96	104	—		_	_	MSZ		
CRB1 63-D	98	104	-	_	-	_			
CRB1 80-D	272	292	—	_	_	_	CRQ2X MSQX		
CRB1□100-□D	544	588	-	_	_	_	Woun		
MSUB 1-□D	2.2	_	_		_		MRQ		
MSUB 3-DD	5.4	-	-	_	_	_			
MSUB 7-DD	11.4	-	—	_	_	_			
MSUB 20-□D	29.0	_	-	_	-	_			

SMC

G-2 Air Consumption Calculation Graph

Graph (17) Air Consumption of Tubing, Steel Tube (1 cycle) 100

100

"Piping length" indicates length of steel tube or tubing which connects rotary actuator and switching valves (solenoid valves, etc.).

Operating pressure (MPa)

0.0 0.0 0.4 0,2 0.3 ò

* Refer to page 40 for size of steel tubing (inner dimension and outer dimension).

0.3