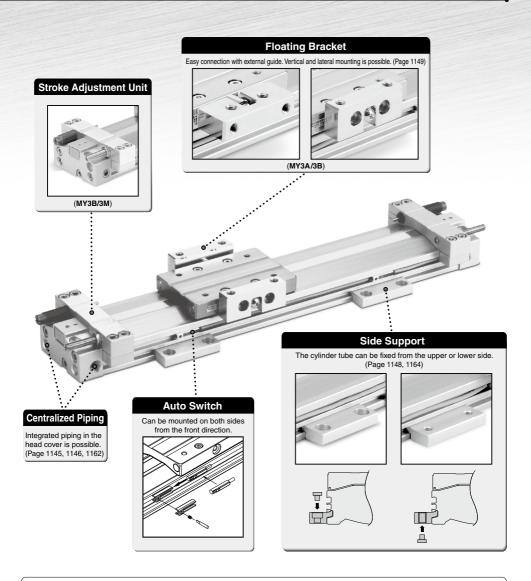
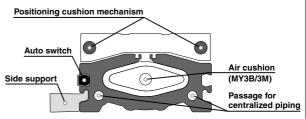
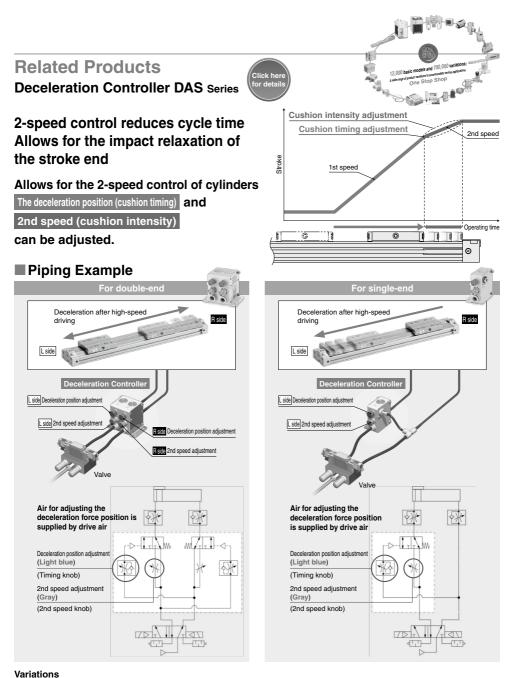
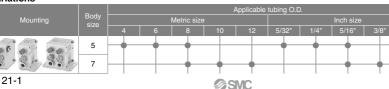

Mechanically Jointed Rodless Cylinders

MY3 Series






* At 100 mm stroke



The uniquely designed piston shape enables reduction of the height and length as well as practical arrangement of the common piping passages, cushion mechanism and positioning mechanism. This has achieved drastic miniaturization and weight reduction.

ø10 to ø40

Up to ø100

A 1121-1

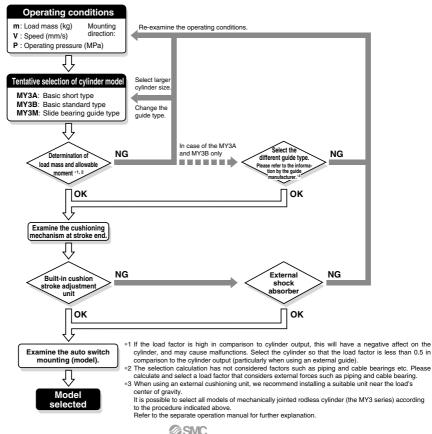
⊘SMC

MY3 Series Model Selection

The following are steps for selecting the MY3 series which is best suited to your application.

Guideline for Tentative Model Selection

Series	Turne	G	uideline for tentati	Note		
Series	Туре	Stroke accuracy	Use of external guide	Direct loaded	Table accuracy	Note
МҮЗА	Basic short type	Δ	0	Δ	Δ	Generally combined with a separate guide making it, by length, more compact.
МҮЗВ	Basic standard type	0	0	0	Δ	Generally combined with a separate guide, when stroke accuracy is required.
МҮЗМ	Slide bearing guide type	0	×	0	0	Mounting a work piece directly on the product, when stroke accuracy is required.


Note 1) The table accuracy means the amount of table deflection when a moment is applied.

Note 2) Travelling parallelism is not guaranteed for this cylinder

Selection Flow Chart

When an external guide is used, the selection confirmation of the guide capacity should follow the selection procedure of the external guide.

The MY3 series allow direct load application within the allowable range for the built-in guide. The payload in this case will vary depending on the driving speed and the mounting orientation of the cylinder. Please refer to the flow below and confirm the selection. (For more detailed description of the selection flow, please refer to the operation manual.)

Model Selection MY3 Series

∆Warning

Reduction circuits or shock absorbers may be necessary.

If the driven object is fast, or the weight is large, the cylinder cushion alone may not be able to absorb the impact. In this case, install a reduction circuit before the cushion, or install an external shock absorber to reduce the impact. Please check the machine's rigidity as well.

Maximum	operating speed		al shock absorbers must meet the cha jed if shock absorbers that do not have t		
How to mount a load	Stroke positioning	Shock absorber	Maximur 500	n operating speed	(mm/s) 1500
		Rubber bumper	MY3A	'	, i i i i i i i i i i i i i i i i i i i
	Cylinder stroke end	Air cushion	MY3B]	
Direct loaded			МҮЗМ		
	Stroke adjustment unit (Option: L, H unit)	Shock absorber		музм	Note 5)
	External stopper	External shock		MY3B Note 3)	
		absorber Note 2)		MY3M	Note 3)
	Cylinder stroke end	Rubber bumper	МУЗА		
Use of external guide Note 1)	se of external	Air cushion	МҮЗВ		
	Stroke adjustment unit (Option: L, H unit)	Shock absorber	МҮЗВ	Note 4) Note 5)	
	External stopper	External shock absorber Note 2)	MY3A		Note 3)

Note 1) Mechanically jointed rodless cylinders can be used with a direct load within the allowable range for each guide type, however, careful alignment is necessary for connection to a load which has an external guide mechanism. The mounting bracket for the external guide and the floating bracket must be mounted in a position that guarantees freedom of movement to the floating Y and Z axial. Ensure that the floating bracket is set so that the thrust transmission section has even contact. * For details on the floating Y and Z axial, refer to the coordinates and moments in the selection method on page 1149.

Note 2) The shock absorber must meet the conditions mentioned on pages 1138 and 1139

Note 3) As the external shock absorber, a unit with appropriate capacity and features should be installed close to the load center of gravity.

Note 4) Use the stroke adjustment unit of the MY3B series with an external guide.

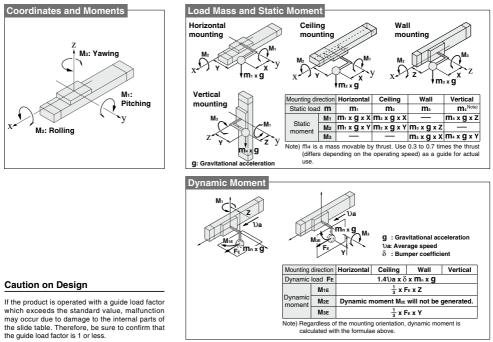
Meximum energing energy

Note 5) Shown below are the details of the maximum operating speed for the stroke adjustment unit.

MY3 Series, Maximum Operating Speed when Using the Stroke Adjustment Unit

Unit:	mm/s

Series	Bore size (mm)	Stroke adjustment range	Inside the fine stroke adjustment range	Outside the fine stroke adjustment range
	16.20	L unit	800	500
MY3B	10, 20	H unit	1000	800
25, 32, 40, 50, 63		L, H unit	1000	800
МҮЗМ	16, 25, 40, 63	L, H unit	1500	800


Outside the fine stroke adjustment range means that when a intermediate fixing spacer (short spacer, long spacer) is used. Intermediate fixing spacer \rightarrow Refer to pages 1141 and 1159.

MY3 Series

Types of Moment and Load Mass Applied to Rodless Cylinders

Multiple moments may be generated depending on the mounting orientation, load and position of the center of gravity.

Calculation of Guide Load Factor

Maximum load mass (1), static moment (2), and dynamic moment (3) (at the time of impact with stopper) must be examined for the selection calculations.
To evaluate, use Va (average speed) for (1) and (2), and V (impact speed V = 1.4Va) for (3). Calculate m max for (1) from the maximum allowable load graph (m1, m2, m3) and Mmax for (2) and (3) from the maximum allowable moment rank (M1, M2, M8).

U : Impact speed (mm/s)

δ : Bumper coefficient

ME: Dynamic moment (N·m)

With rubber bumper = 4/100With air cushion = 1/100

With shock absorber = 1/100 g : Gravitational acceleration (9.8 m/s²)

L1 : Distance to the load's center of gravity (m)

1)

m

FF

0

MF

(Note 1)	Note 2)
Sum of guide	ΣQ -	Load mass [m]	Static moment [M]	Dynamic moment [ME]
load factors	20. =	Maximum load mass	Allowable static moment	Allowable dynamic moment
		[m max]	[Mmax]	[Memax]

Note 1) Moment caused by the load, etc., with cylinder in resting condition.

Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of impact with stopper). Note 3) Depending on the shape of the workpiece, multiple moments may occur. When this happens, the sum of the load factors (Σα) is the total of all such moments.

2. Reference formulas [Dynamic moment at impact]

Use the following formulas to calculate dynamic moment when taking stopper impact into consideration.

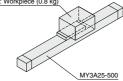
- m : Load mass (kg)
- F : Load (N)
- FE : Load equivalent to impact (at impact with stopper) (N)
- Ua: Average speed (mm/s)
- M : Static moment (N · m)
- $\upsilon = 1.4\upsilon a \text{ (mm/s)}$ $F_E = 1.4\upsilon a x \delta x m \cdot g$
- $\therefore Me = \frac{1}{3} \cdot Fe \cdot L_1 = 4.57 \Im a\delta m L_1 (N \cdot m)$

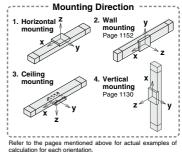
Note 4) $1.4 \tilde{\upsilon} a \delta$ is a dimension less coefficient for calculating impact force.

Note 5) Average load coefficient = $\left(\frac{1}{3}\right)$:

This coefficient is for averaging the maximum load moment at the time of stopper impact according to service life calculations.

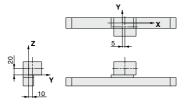
3. For detailed selection procedure, please refer to pages 1130, 1131, 1152, 1153.




Model Selection MY3 Series

Calculation of Guide Load Factor

1 Operating Conditions



* For ceiling mounting, refer to 992.

2 Load Blocking

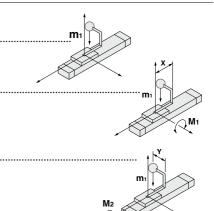
Workpiece Mass and Center of Gravity

Workpiece	Mass	Center of gravity			
no.	(m)	X-axis	Y-axis	Z-axis	
w	0.8 kg	5 mm	10 mm	20 mm	

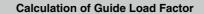
3 Calculation of Load Factor for Static Load

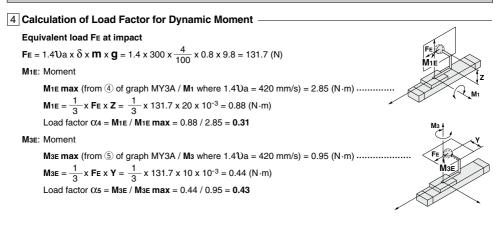
m1: Mass

m₁ max (from 1) of graph MY3A / m₁) = 10.7 (kg) Load factor $\alpha_1 = m_1 / m_1$ max = 0.8 / 10.7 = 0.08


M1: Moment

M1 max (from ② of graph MY3A / M1) = 4 (N·m) M1 = $\mathbf{m}_1 \times \mathbf{g} \times \mathbf{X} = 0.8 \times 9.8 \times 5 \times 10^{-3} = 0.04$ (N·m)

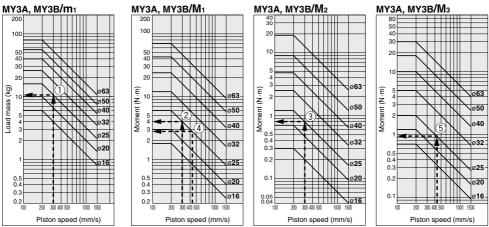

Load factor $\alpha_2 = M_1 / M_1 max = 0.04 / 4 = 0.01$


M2: Moment

M2 max (from ③ of graph MY3A / M2) = 0.8 (N·m) M3 = $\mathbf{M}_1 \times \mathbf{g} \times \mathbf{Y} = 0.8 \times 9.8 \times 10 \times 10^{-3} = 0.08 (N \cdot m)$ Load factor 0(3 = M2 / M2 max = 0.08 / 0.8 = 0.1

MY3 Series

5 Sum and Examination of Guide Load Factors –

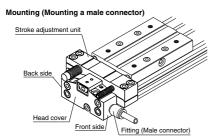

 $\Sigma\alpha = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 0.08 + 0.01 + 0.1 + 0.31 + 0.43 = 0.93 \le 1$

The above calculation is within the allowable value, and therefore the selected model can be used. Select a shock absorber separately.

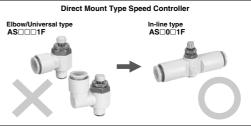
In an actual calculation, when the sum of guide load factors $\Sigma \alpha$ in the formula above is more than 1, consider decreasing the speed, increasing the bore size, or changing the product series.

Load Mass

Allowable Moment


* Refer to page 1153 for the MY3M.

Model Selection **MY3 Series**


Mounting of Fitting and Speed Controller

When the stroke adjustment unit is used with MY3B and MY3M, the fittings mountable on the front or back port will be limited to those listed below.

In such cases, since direct mount type speed controllers cannot be mounted, use in-line type speed controllers. (Except MY3B40/50/63 and MY3M63)

Refer to the Web Catalog for the details of fittings and speed controllers.

Cylinder model size	Connection thread	Applicable tubing O.D. (mm)	Fitting type	Fitting model		
		0.D. (mm)	Male connector	KQ2H23-M5		
			Male elbow	KQ2L23-M5		
		3.2	Hexagon socket head male connector	KQ2S23-M5		
		•	Male connector	KQ2H23-M5		
MY3□16	M5		Male elbow	KQ2L23-M5		
	_		Male elbow	KQ2L04-M5		
		4	Male elbow	KQ2L04-M5		
			Hexagon socket head male connector	KQ2S04-M5		
		6	Male elbow	KQ2L06-M5		
			Hexagon socket head male connector	KQ2S23-M5□		
		3.2	Male connector	KQ2H23-M5		
			Male elbow	KQ2L23-M5		
			Male connector	KQ2H04-M5		
MY3□20	M5	4	Male elbow	KQ2L04-M5		
			Hexagon socket head male connector	KQ2S04-M5		
			Male connector	KQ2H06-M5		
		6	Male elbow	KQ2L06-M5		
			Hexagon socket head male connector	KQ2S06-M5		
	Bc1/8	3.2	Male connector	KQ2H23-01S		
		3.2	Male elbow	KQ2L23-01S		
					Male connector	KQ2H04-01□S
			Hexagon socket head male connector	KQ2S04-01□S		
		4	Male connector	KQ2H04-01S		
MY3 25			Male elbow	KQ2L04-01S		
IVI Y 3L125	HC1/8		Hexagon socket head male connector	KQ2S04-01S		
			Male connector	KQ2H06-01□S		
			Male elbow	KQ2L06-01□S		
		6	Hexagon socket head male connector	KQ2S06-01□S		
			Male elbow	KQ2L06-01S		
			Hexagon socket head male connector	KQ2S06-01S		
			Male connector	KQ2H04-01S		
		4	Male elbow	KQ2L04-01S		
			Hexagon socket head male connector	KQ2S04-01S		
			Male connector	KQ2H06-01S		
MY3□32	Rc1/8	6	Male elbow	KQ2L06-01S		
			Hexagon socket head male connector	KQ2S06-01S		
			Male connector	KQ2H08-01S		
		8	Male elbow	KQ2L08-01S		
				Hexagon socket head male connector	KQ2S08-01S	

Cylinder model size			Fitting type	Fitting model		
		4	Male connector	KQ2H04-02S		
			Male connector	KQ2H06-02S		
		6	Male elbow	KQ2L06-02S		
MY3□40	Rc1/4		Hexagon socket head male connector	KQ2S06-02S		
			Male connector	KQ2H08-02S		
		8	Male elbow	KQ2L08-02S		
			Hexagon socket head male connector	KQ2S08-02S		
			Male connector	KQ2H06-03S		
		6	Male elbow	KQ2L06-03S		
			Hexagon socket head male connector	KQ2S06-03S		
			Male connector	KQ2H08-03S		
	Rc3/8	/8 10	Male elbow	KQ2L08-03S		
MY3□50			Hexagon socket head male connector	KQ2S08-03S		
			Male connector	KQ2H10-03S		
			Male elbow	KQ2L10-03S		
						Hexagon socket head male connector
			Male connector	KQ2H12-03S		
		12	Male elbow	KQ2L12-03S		
			Hexagon socket head male connector	KQ2S12-03S		
		6	Male connector	KQ2H06-03S		
		8	Male elbow	KQ2L08-03S		
			Male connector	KQ2H10-03S		
		10	Male elbow	KQ2L10-03S		
MY3□63	Rc3/8		Hexagon socket head male connector	KQ2S10-03S		
			Male connector	KQ2H12-03S		
		12	Male elbow	KQ2L12-03S		
			Hexagon socket head male connector	KQ2S12-03S		
		16	Male elbow	KQ2L16-03S		

MY3A Series

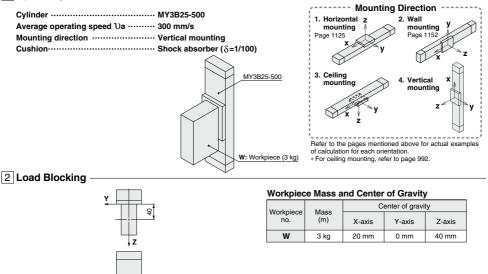
Basic, short type (Rubber bumper)

ø16, ø20, ø25, ø32, ø40, ø50, ø63

100

MY3B Series

Basic, standard type (Air cushion)


ø16, ø20, ø25, ø32, ø40, ø50, ø63

MY3A/3B Series Model Selection

The following are steps for selecting the MY3 series which is best suited to your application.

Calculation of Guide Load Factor

1 Operating Conditions

3 Calculation of Load Factor for Static Load -

m : Mass

2

×х

M1: Moment

M1 max (from ① of graph MY3A/3B/M1) = 4 (N·m)

 $M_1 = M \times g \times Z = 3 \times 9.8 \times 40 \times 10^{-3} = 1.18 (N \cdot m)$

Load factor $\Omega_1 = M_1 / M_2 max = 1.18 / 4 = 0.29$

m

Model Selection MY3A/3B Series

Calculation of Guide Load Factor

4 Calculation of Load Factor for Dynamic Moment

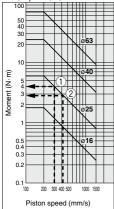
Equivalent load FE at impact

 $\begin{aligned} \textbf{Fe} &= 1.4 \ensuremath{\mathbb{V}} \textbf{a} \ge \delta \ge \textbf{m} \ge \textbf{g} = 1.4 \ge 300 \ge \frac{1}{100} \ge 3 \ge 9.8 = 123.56 \text{ (N)} \\ \textbf{M1e: Moment} \\ \textbf{M1e max} (\text{from (2) of graph MY3A/3B/M1 where } \textbf{1.4Ua} = 420 \text{ mm/s}) = 2.86 \text{ (N·m)} \\ \textbf{M1e} &= \frac{1}{3} \ge \textbf{Fe} \ge \textbf{Z} = \frac{1}{3} \ge 123.56 \ge 40 \ge 10^{-3} = 1.65 \text{ (N·m)} \end{aligned}$

Load factor $\Omega_2 = M_{1E}/M_{1E} max = 1.65/2.86 = 0.58$

5 Sum and Examination of Guide Load Factors

 $\Sigma \alpha = \Omega_1 + \Omega_2 = 0.87 \le 1$

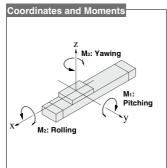

The above calculation is within the allowable value, and therefore the selected model can be used.

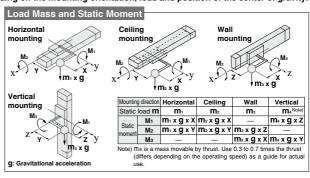
Select a shock absorber separately.

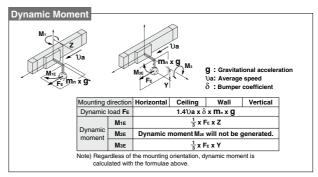
In an actual calculation, when the sum of guide load factors $\Sigma \alpha$ in the formula above is more than 1, consider decreasing the speed, increasing the bore size, or changing the product series. Calculating the above formula is easy with the [SMC Pneumatics CAD System].

Allowable Moment

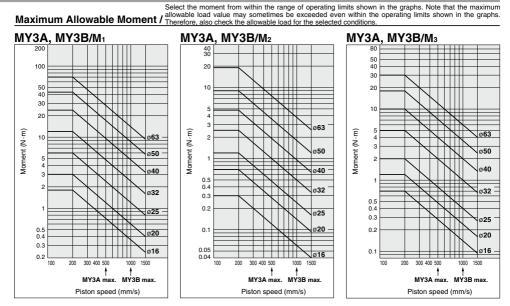
MY3A, MY3B/M1

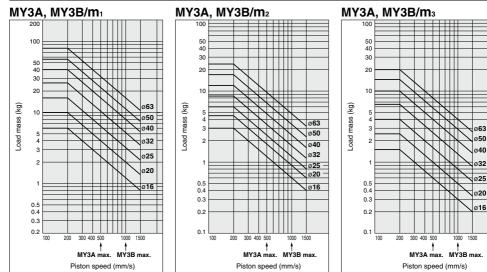

Maximum Allowable Moment / Maximum Allowable Load


Series	Bore size	Maximum Allowable Moment (N·m)			Maximum Allowable Load (kg)		
Series	(mm)	M1	M2	Мз	m1	m ₂	m3
	16	1.8	0.3	0.7	6	3	1.5
	20	3	0.7	1.2	10	4.3	2.4
	25	6	1.2	2	16	6	4
MY3A MY3B	32	12	2.5	5	26	8.5	6.7
	40	24	4.8	10	40	12	10
	50	43	9	18	56	17	14
	63	70	19	30	80	24	20

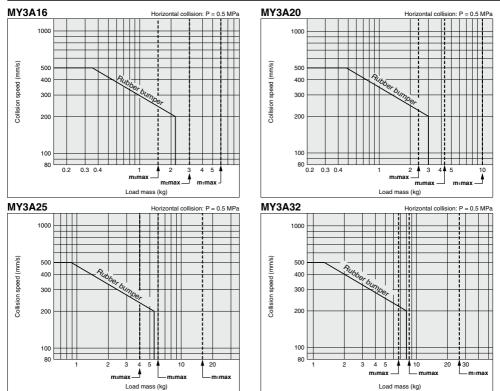

The above values are the maximum allowable values for moment and load. Refer to each graph regarding the maximum allowable moment and maximum allowable load for a particular piston speed.

Types of Moment and Load Mass Applied to Rodless Cylinders


Multiple moments may be generated depending on the mounting orientation, load and position of the center of gravity.



Model Selection MY3A/3B Series


Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions.

SMC

Cushion Capacity

Absorption Capacity of Rubber Bumper (MY3A)

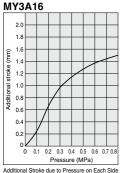
Rubber Bumper Displacement (Additional Stroke due to Pressure on Each Side)

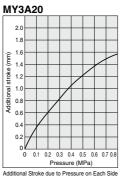
The stop position of the built-in rubber bumper of the MY3A series varies depending on the operating pressure. For alignment at the stroke end, find the guideline for the stroke end position in operation as follows. Find the incremental displacement at the operating pressure in the graph and add it to the stroke end position at no pressurization. If positioning accuracy is required for the stop position at the stroke end, consider installing an external positioning mechanism or switching to the air cushion type (MY3B).

MY3A25

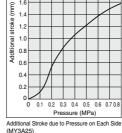
21

1.8

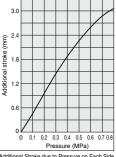

1.6


1.4

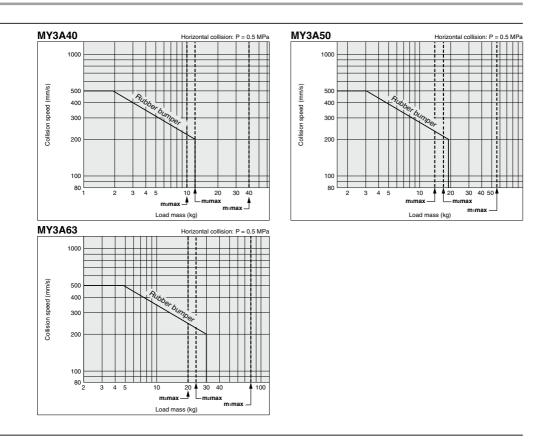
1.2

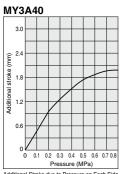

1.0

SMC

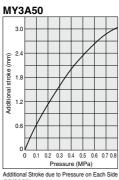


(MY3A20)

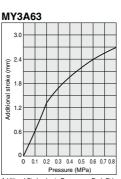

MY3A32 3.0



Additional Stroke due to Pressure on Each Side (MY3A32)

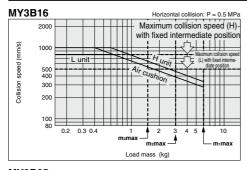

(MY3A16) 1134

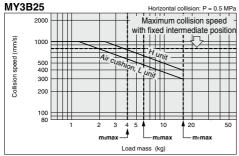
Model Selection MY3A/3B Series

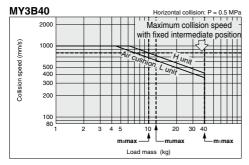


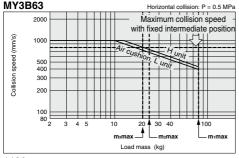
(MY3A50)

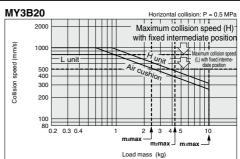
SMC

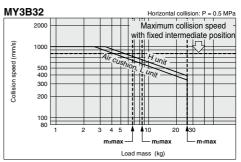


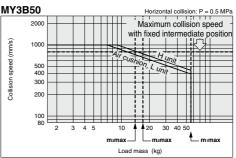

Additional Stroke due to Pressure on Each Side (MY3A63)

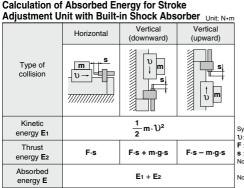

1135


Cushion Capacity


Absorption Capacity of Air Cushion and Stroke Adjustment Unit (MY3B)







Air Cushion Stroke

SMC

Bore size (mm)	Cushion stroke
16	13
20	16
25	18
32	22
40	25
50	28
63	30

Unit: mm

Stroke Adjustment Unit Fine Stroke Adjustment Bange

me ou oke Aujustment nange			
Bore size (mm)	Fine stroke adjustment range		
16, 20	0 to -10		
25, 32	0 to -12		
40, 50	0 to -16		
63	0 to -24		

Note) The maximum operating speed will differ when the stroke adjustment unit with the spacer for intermediate securing is used outside the maximum fine stroke adjustment range (with reference to the fixed stroke end). (Refer to the graph on page 1136.)

Symbols

- U: Speed of impacting object (m/s)
- F : Cylinder thrust (N)
- m: Weight of impacting object (kg) Gravitational acceleration (9.8 m/s²)
- s : Shock absorber stroke (m)
- Note) The speed of the impacting object is measured at the time of collision with the shock absorbe
- Note) With an operating pressure of 0.6 MPa or larger, the use of a cushion or an external shock absorber conforming to the conditions on pages 1138 and 1139 is recommended.

Stroke Adjustment

<Stroke adjustment of the adjustment bolt>

Loosen the lock nut for the adjustment bolt, adjust the stroke on the head cover side with a hexagon wrench, and secure with a lock nut.

<Stroke adjustment of the shock absorber: MY3B>

Loosen the two unit fixing bolts on the shock absorber side and rotate the shock absorber for stroke adjustment. Tighten the unit fixing bolts equally to secure the shock absorber. Use caution not to overtighten the fixing bolts.

(Refer to "MY3B Stroke Adjustment Unit Tightening Torque for Fixing Bolts.")

MY3B Stroke Adjustment Unit

Tightening Torque for	Unit: N•m	
Bore size (mm)	Unit	Tightening torque
16, 20	L H	0.7
25, 32	L H	3.5
40, 50	L H	13.8
63	L H	27.5
A	•	

A Caution

1. Use caution not to have your hands caught in the unit.

When using a cylinder with stroke adjustment unit, the space between the slide table (slider) and the stroke adjustment unit is very narrow. Care should be taken to avoid the danger of hands being caught in this small space. Install a protective cover to prevent the risk of accidents to the human body.

2. The stroke adjustment unit may interfere with the mounting bolt when mounting the cylinder on the equipment.

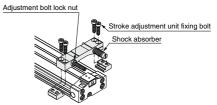
Loosen the unit fixing bolt and dislocate the stroke adjustment unit before mounting the cylinder. After fixing the cylinder. move the stroke adjustment unit back to the desired location and tighten the unit fixing bolt.

Use caution not to overtighten the fixing bolts. (Refer to "MY3B Stroke Adjustment Unit Tightening Torque for Fixing Bolts".)

A Caution

3. Use an external guide for the MY3B stroke adjustment unit.

If a stroke adjustment unit is used where a load is directly applied, the collision reaction may cause damage to the cylinder.


4. Conduct stroke adjustment with an adjustment bolt as follows:

The adjustment bolt should be secured on the same surface as the shock absorber after stroke adjustment.

If the stopper surface of the shock absorber and the end surface of the adjustment bolt are not on the same level, it may result in an unstable stop position of the slide table or reduced durability.

5. Securing the unit body

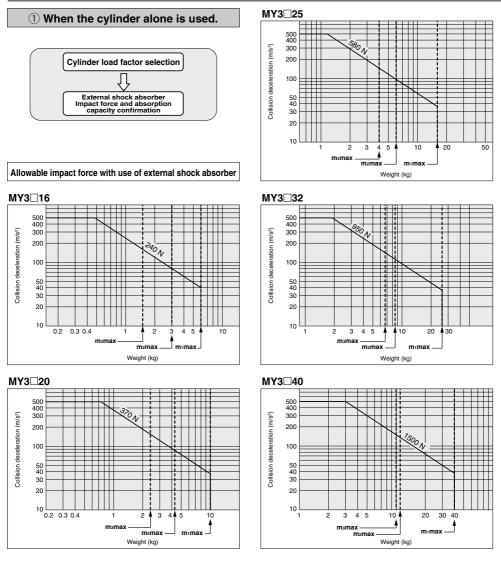
<MY3B>

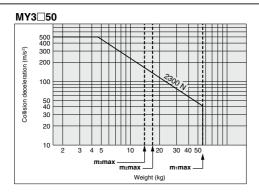
Tighten the four unit fixing bolts equally to secure the unit body.

6. Do not fix and use the stroke adjustment unit at an intermediate position (MY3B).

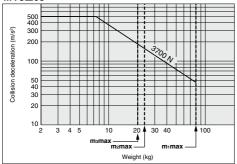
When the stroke adjustment unit is fixed in an intermediate position, slippage can occur depending on the amount of energy released at the time of an impact. In that case, use a short spacer or a long spacer.

(Refer to "MY3B Stroke Adjustment Unit Tightening Torque for Fixing Bolts.")

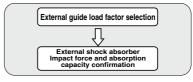

If the stroke adjustment unit is fixed at an intermediate position, the energy absorption capacity may be different. For this reason, refer to the maximum absorbed energy listed above, and use the adjustment unit within the allowable absorption capacity.



External Shock Absorber Selection


When the positioning of the stop position is necessary or the absorption capacity of the built-in cushion is not sufficient, refer to the selection procedure below and consider the installation of an external shock absorber.

Selection Confirmation Items with Use of External Shock Absorber

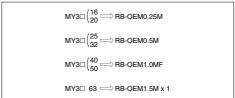


MY3063

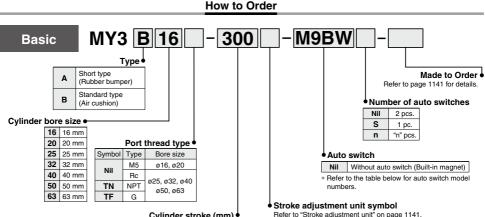
2 When the external guide is used.

Piston Speed with Use of External Shock Absorber

Bore size (mm)	16	20	25	32	40	50	63
МҮЗА			90 to	1500 1	~~/o		
МҮЗВ			80 10	15001	1111/5		


An external shock absorber can be used within the above piston speed range. In conjunction with the absorption capacity selection, however, also confirm the conditions which make the shock absorber collision impact force to stay within the allowable range in the graph.

Use of an external shock absorber with conditions exceeding the allowable range may damage the cylinder.


To confirm the collision impact force of the shock absorber, first find the impact force or acceleration under the operating conditions using the selection information or selection software provided by the manufacturer and then, refer to the graph.

(The selection should allow a sufficient margin because the value calculated by the selection software involves an error with reference to the actual value.)

Example of Recommended Use of the External Shock Absorber

Mechanically Jointed Rodless Cylinder/Basic Type MY3A/3B Series ø16, ø20, ø25, ø32, ø40, ø50, ø63

* Stroke adjustment unit is not available for MY3A.

Bore size	Standard stroke*1	Long stroke	Maximum manufacturable stroke
16, 20, 25 32, 40, 50 63	100, 200, 300, 400, 500, 600 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000 *1 The stroke can be manufac- tured in 1 mm increments from 1 mm stroke.	Strokes of 2001 to 3000 mm (1 mm increments) exceeding the standard stroke	3000

Ordering example

* Long stroke can be ordered the same as the standard stroke. MY3A20-3000L-M9BW Note) Please be advised that with stroke 49 or less, there are cases where auto switch mounting is not possible and the performance of the air cushion may decline.

Applicable Auto Switches/Refer to pages 1289 to 1383 for further information on auto switches.

		-	light		L	oad volta	ge	Auto swite	ch model	Lead	wire I	ength	n (m)					
Туре	Special function	Electrical entry	Indicator	Wiring (Output)	D	С	AC	Perpendicular	In-line	0.5 (Nil)	1 (M)	3 (L)	5	Pre-wired connector	Applical	ble load		
_				3-wire (NPN)		5 V. 12 V		M9NV	M9N	٠	٠	•	0	0	IC circuit			
itch				3-wire (PNP)		5 V, 12 V		M9PV	M9P	٠	٠	•	0	0	IC CIICUIL			
switch				2-wire		12 V		M9BV	M9B	•	•	٠	0	0	—			
auto	D			3-wire (NPN)		5 V. 12 V		M9NWV	M9NW	٠	٠	•	0	0	IC circuit			
eal	Diagnostic indication (2-color indicator)	Grommet	Yes	3-wire (PNP)	24 V	5 V, 12 V	-	M9PWV	M9PW	٠	٠	•	0	0	IC CIICUIL	Relay, PLC		
state	()			2-wire			12 V		M9BWV	M9BW	•	•	٠	0	0	—		
				3-wire (NPN)		5 V 10 V		5 V 10 V	5 V, 12 V		M9NAV*1	M9NA*1	0	0	•	0	0	IC circuit
Solid	Water resistant (2-color indicator)			3-wire (PNP)		5 V, 12 V		M9PAV*1	M9PA*1	0	0	•	0	0	IC CIICUIL			
	()			2-wire		12 V		M9BAV*1	M9BA*1	0	0	٠	0	0	—			
Reed o switch			Yes	3-wire (NPN equiv.)	-	5 V	-	A96V	A96	•	•	•	•	0	IC circuit	_		
Re auto s		Grommet		2-wire	24 V	12 V	100 V	A93V	A93	٠	٠	٠	٠	O*2	-	Relay,		
au			No	2-wire	24 V	12 V	100 V or less	A90V	A90	•	•	•	•	0*2	IC circuit	PLC		

*1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.

*2 The load voltage used is 24 VDC.

* Lead wire length symbols: 0.5 m Nil (Example) M9NW

1 m M (Example) M9NWM

3 m L

5 m ······· Z (Example) M9NWL

Auto switches marked with "O" are produced upon receipt of order.
Separate switch spacers (BMY3-016) are required for retrofitting of auto switches.

(Example) M9NWL

* There are other applicable auto switches than listed above. For details, refer to page 1165.

Refer to pages 1358 and 1359 for the details of auto switches with a pre-wired connector.
Auto switches are shipped together (not assembled). (Refer to page 1165 for the details of auto switch mounting.)

Specifications	
Dere eize (mm)	16.00

Bore size (mm)	16, 20	25, 32	40	50, 63			
Fluid	Air						
Action	Double acting						
Operating pressure range	0.2 to 0.8 MPa	0.2 to 0.8 MPa 0.15 to 0.8 MPa					
Proof pressure	1.2 MPa						
Ambient and fluid temperature		5 to	60°C				
Cushion	Rubbe	r bumper (MY3A	A) / Air cushion (I	MY3B)			
Lubrication		Not required					
Stroke length tolerance	1000 mm or less ^{+1.8} , From 1001 mm ^{+2.8} Note)						
Port size (Rc, NPT, G)	M5 x 0.8	1/8	1/4	3/8			

Note) The tolerance of the MY3A is a value with no pressurization. When a rubber bumper is used, the stroke of the MY3A varies according to the operating pressure. To find the stroke length tolerance at each operating pressure, double the additional stroke due to pressure on each side (pages 1134 and 1135) and add it.

Piston Speed

Bore size (mm)	16	20	25	32	40	50	63
Without stroke adjustment unit (MY3A)	80 to 500 mm/s						
Without stroke adjustment unit (MY3B)	80 to 1000 mm/s						
Stroke adjustment unit			80 to	0001 o	nm/s		
(L and H unit/MY3B)	(ø16, ø20 L unit: 80 to 800 mm/s)						
External shock absorber (low reaction type)* 80 to 1500 mm/s							

External snock absorber (low reaction type)

* Refer to "External Shock Absorber Selection" on pages 1138 and 1139. When the RB series is used, operate at a piston speed that will not exceed the absorption capacity of the air cushion and stroke adjustment unit.

 Because of its structure, the fluctuation of this cylinder's operating speed is greater than rod type cylinders. For applications that require constant speed, select an applicable equipment for the level of demand.

Stroke Adjustment Unit Specifications

Bore size (mm)		16, 20		25, 32		40,	50	6	3
Unit symbol		L	Н	L	Н	L	Н	L	н
Shock absorber model		RB0806	RB1007	RB1007	RB1412	RB1412	RB2015	RB2015	RB2725
Shock absorber soft type RJ series (-XB22) model		RJ0806H	RJ1007H	RJ1007H	RJ1412H	RJ1412H	-	_	Ι
Stroke adjustment	Without spacer	0 to -10		0 to -12		0 to -16		0 to -24	
range by intermediate	ange by intermediate With short spacer		o –20	-12 to -24		-16 to -32		-24 to -48	
fixing spacer (mm)	With long spacer	-20 to	o –30	-24 t	o –36	-32 to -48		-48 to -72	

* Stroke adjustment range is applicable for one side when mounted on a cylinder.

Stroke Adjustment Unit Symbol

	<u>_</u>			Riç	ght side s	troke adj	ustment u	unit	
		Without	L: With lov + Adjustm	v load shock ent bolt	k absorber	H: With high load shock absorber + Adjustment bolt			
			unit		With short spacer	With long spacer		With short spacer	With long spacer
Without unit		Nil	SL	SL6	SL7	SH	SH6	SH7	
stroke int unit		oad shock absorber +	LS	L	LL6	LL7	LH	LH6	LH7
n tr	Adjustment	With short spacer	L6S	L6L	L6	L6L7	L6H	L6H6	L6H7
a e	DOIL	With long spacer	L7S	L7L	L7L6	L7	L7H	L7H6	L7H7
t si ust	Adjustment bolt With short spacer With long spacer H: With high load shock absorber + Adjustment H: With short spacer With short spacer With short spacer With short spacer		HS	HL	HL6	HL7	н	HH6	HH7
adj			H6S	H6L	H6L6	H6L7	H6H	H6	H6H7
	bolt	With long spacer	H7S	H7L	H7L6	H7L7	H7H	H7H6	H7

Stroke adjustment unit mounting diagram

Stroke adjustment unit Left side L unit Long spacer Short spacer

* Spacers are used to fix the stroke adjustment unit at an intermediate stroke position.

Shock Absorber Specifications

Туре		RB 0806	RB 1007	RB 1412	RB 2015	RB 2725				
Max. energy	absorption (J)	0.84	2.4	10.1	29.8	46.6				
Stroke abso	orption (mm)	6	7	12	15	25				
Max. collision	n speed (mm/s)	1000								
Max. operating fr	equency (cycle/min)	80	70	45	25	10				
Spring	Extended	1.96	4.22	6.86	8.34	8.83				
force (N) Compressed		4.22	6.86	15.98	20.50	20.01				
Operating temp	erature range (°C)	5 to 60								

Note) The shock absorber service life is different from that of the MY3A/3B cylinders depending on operating conditions. Allowable operating cycle under the specifications set in this catalog is shown below.

1.2 million times RB08

Note) Specified service life (suitable replacement period) is the value at room temperature (20 to 25°C). The period may vary depending on the temperature and other conditions. In some cases the absorber may need to be replaced before the allowable operating cycle above.

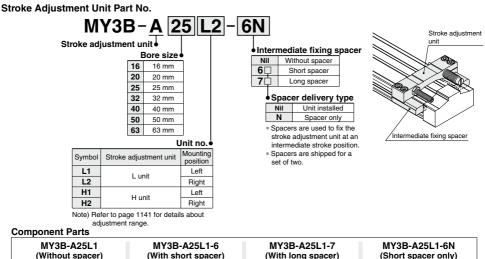
Theoretical Output

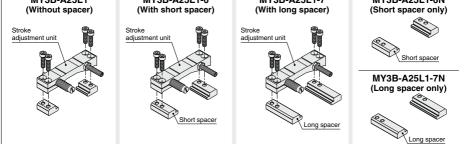
								Unit: N	
Bore	Piston		Operating pressure (MPa)						
(mm)	(mm ²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8	
16	200	40	60	80	100	120	140	160	
20	314	62	94	125	157	188	219	251	
25	490	98	147	196	245	294	343	392	
32	804	161	241	322	402	483	563	643	
40	1256	251	377	502	628	754	879	1005	
50	1962	392	588	784	981	1177	1373	1569	
63	3115	623	934	1246	1557	1869	2180	2492	

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Weight

Unit: kg									
Model	Model Bore size		Additional weight per	Weight of	Stroke adjustm (per	ent unit weight unit)			
wouer	(mm)	weight 50 mm stroke		moving parts	L unit weight	H unit weight			
	16	0.21	0.06	0.06	/	/			
	20	0.39	0.09	0.12					
	25	0.62	0.11	0.20					
МҮЗА	32	1.25	0.18	0.37					
	40	2.31	0.25	0.67					
	50	3.72	0.40	1.07		/			
	63	6.46	0.56	2.16		/			
	16	0.22	0.06	0.06	0.04	0.05			
	20	0.49	0.09	0.12	0.06	0.08			
	25	0.71	0.11	0.20	0.10	0.15			
MY3B	32	1.39	0.18	0.37	0.14	0.22			
	40	2.41	0.25	0.67	0.26	0.30			
	50	4.10	0.40	1.08	0.38	0.52			
	63	7.04	0.56	2.16	0.57	0.92			

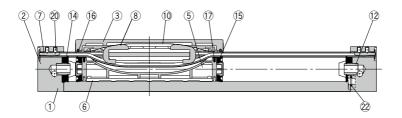

Calculation method/Example: MY3B25-300L

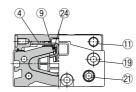

Basic weight 0.71 kg Cylinder stroke 300 st Additional weight 0.11/50 st

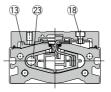
L unit weight 0.1 kg

0.71 + 0.11 x 300 ÷ 50 + 0.1 x 2 ≈ 1.57 kg

Option




1142


SMC

Construction: Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63

МҮЗА

Component Parts

No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover	Aluminum alloy	Hard anodized
3	Slide table	Aluminum alloy	Electroless nickel plated
4	Piston yoke	Stainless steel	
5	Piston	Polyamide	
6	Wear ring	Polyacetal	
7	Belt clamp	Polybutylene terephthalate	
8	Belt separator	Polyacetal	
11	Stopper	Carbon steel	Electroless nickel plated

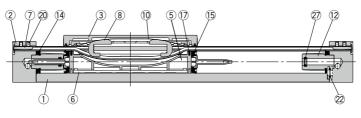
No.	Description	Material	Note
12	Seal ring	Aluminum alloy	Anodized
13	Bearing	Polyacetal	
17	Inner wiper	Special resin	
18	Hexagon socket head cap screw	Chrome molybdenum steel	Chromated
19	Hexagon socket head cap screw	Chrome molybdenum steel	Chromated
20	Hexagon socket head set screw	Chrome molybdenum steel	Chromated
21	Hexagon socket head plug	Carbon steel	Chromated
23	Magnet	-	
24	Seal magnet	Rubber magnet	

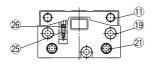
Replacement Parts/Seal

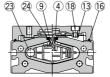
No.	Description	Material	Qty.	MY3A16	MY3A20	MY3A25	MY3A32	MY3A40	MY3A50	MY3A63
9	Seal belt	Urethane Polyamide	1	MY3A16-16C- Stroke	MY3A20-16C- Stroke	MY3A25-16C- Stroke	MY3A32-16C- Stroke	MY3A40-16C- Stroke	MY3A50-16C- Stroke	MY3A63-16A- Stroke
10	Dust seal band	Stainless steel	1	MY3A16-16B- Stroke	MY3A20-16B- Stroke	MY3A25-16B- Stroke	MY3A32-16B- Stroke	MY3A40-16B- Stroke	MY3A50-16B- Stroke	MY3A63-16B- Stroke
16	Scraper	Polyamide	1	MYA16-15- R6656	MYA20-15- AC594	MYA25-15- R6657	MYA32-15- AC595	MYA40-15- R6658	MYA50-15- AC596	MYA63-15- R6659
14	Gasket bumper	NBR	2							
15	Piston seal	NBR	2	MY3A16-PS	MY3A20-PS	MY3A25-PS	MY3A32-PS	MY3A40-PS	MY3A50-PS	MY3A63-PS
22	O-ring	NBR	4							

* Seal kit includes (4, (5, and (2). Order the seal kit based on each bore size.

* Seal kit includes a grease pack (10 g).


When (9 and (9 are shipped as single units, a grease pack is included (10 g per 1000 strokes). Order with the following part number when only the grease pack is needed. Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)


* For instructions on how to replace replacement parts/seals, refer to the operation manual.



Construction: Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63

МҮ3В

Component Parts

No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover	Aluminum alloy	Hard anodized
3	Slide table	Aluminum alloy	Electroless nickel plated
4	Piston yoke	Stainless steel	
5	Piston	Polyamide	
6	Wear ring	Polyacetal	
7	Belt clamp	Polybutylene terephthalate	
8	Belt separator	Polyacetal	
11	Stopper	Carbon steel	Electroless nickel plated
12	Cushion boss	Aluminum alloy	Chromated
13	Bearing	Polyacetal	

No.	Description	Material	Note
17	Inner wiper	Special resin	
18	Hexagon socket head cap screw	Chrome molybdenum steel	Chromated
19	Hexagon socket head cap screw	Chrome molybdenum steel	Chromated
20	Hexagon socket head set screw	Chrome molybdenum steel	Chromated
21	Hexagon socket head plug	Carbon steel	Chromated
23	Magnet	-	
24	Seal magnet	Rubber magnet	
25	Cushion needle	Rolled steel	Nickel plated

Replacement Parts/Seal

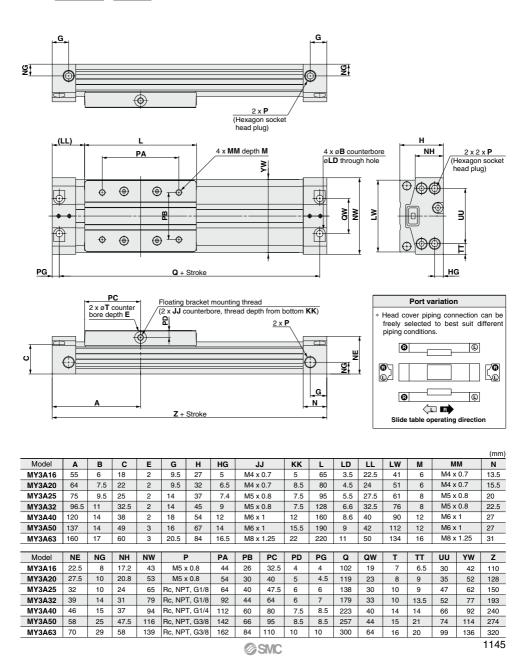
No.	Description	Material	Qty.	MY3B16	MY3B20	MY3B25	MY3B32	MY3B40	MY3B50	MY3B63
9	Seal belt	Urethane Polyamide	1	MY3B16-16C- Stroke	MY3B20-16C- Stroke	MY3B25-16C- Stroke	MY3B32-16C- Stroke	MY3B40-16C- Stroke	MY3B50-16C- Stroke	MY3B63-16A- Stroke
10	Dust seal band	Stainless steel	1	MY3B16-16B- Stroke	MY3B20-16B- Stroke	MY3B25-16B- Stroke	MY3B32-16B- Stroke	MY3B40-16B- Stroke	MY3B50-16B- Stroke	MY3B63-16B- Stroke
16	Scraper	Polyamide	1	MYA16-15- R6656	MYA20-15- AC594	MYA25-15- R6657	MYA32-15- AC595	MYA40-15- R6658	MYA50-15- AC596	MYA63-15- R6659
26	O-ring	NBR	2	KA00309	KA00309	KA00309	KA00309	KA00320	KA00320	KA00402
20	O-mig	NDN	2	(ø4 x ø1.8 x ø1.1)	(ø7.15 x ø3.75 x ø1.7)	(ø7.15 x ø3.75 x ø1.7)	(ø8.3 x ø4.5 x ø1.9)			
14	Tube gasket	NBR	2							
15	Piston seal	NBR	2	MY3B16-PS	MY3B20-PS	MY3B25-PS	MY3B32-PS	MY3B40-PS	MY3B50-PS	MY3B63-PS
22	O-ring	NBR	4	WITSBIG-FS	WIT3620-F3	WIT3623-F3	WIT3D32-F3	WIT3D40-F3	WIT3D30-F3	WIT3003-F3
27	Cushion seal	NBR	2							

* Seal kit includes (4, (5, 2) and 2). Order the seal kit based on each bore size.

* Seal kit includes a grease pack (10 g).

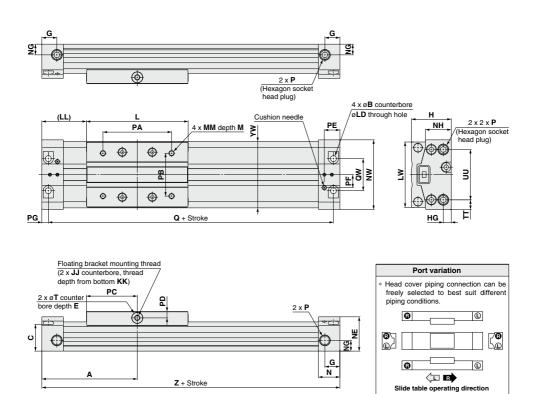
When (i) and (i) are shipped as single units, a grease pack is included (10 g per 1000 strokes). Order with the following part number when only the grease pack is needed.

Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)


* For instructions on how to replace replacement parts/seals, refer to the operation manual.

Short Type: Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63

MY3A Bore size - Stroke

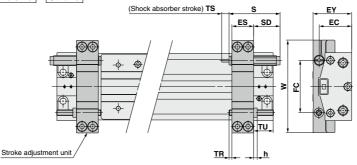

* Refer to "Specific Product Precautions" on page 1167 for mounting.

Standard Type: Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63

MY3B Bore size - Stroke

* Refer to "Specific Product Precautions" on page 1167 for mounting.

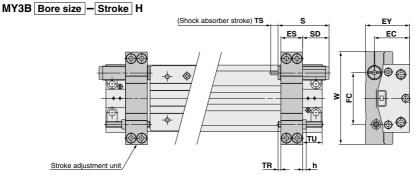
																			(mm)
Model	Α	В	C	1	E G	н	HG		JJ	KK	L	LD) L	L	LW	М	MM	1	Ν
MY3B16	61	6	18	1	2 9.5	27	5	M4	x 0.7	5	65	3.	5 28	3.5	41	6	M4 x 0).7	13.5
MY3B20	74	7.5	22	:	2 9.5	32	6.5	M4	x 0.7	8.5	80	4.	5 34	4	51	6	M4 x 0).7	15.5
MY3B25	89	9.5	25	1	2 14	37	7.4	M5	x 0.8	7.5	95	5.	5 4	1.5	61	8	M5 x 0	.8	20
MY3B32	112.5	11	32.	5 1	2 14	45	9	M5	x 0.8	7.5	128	6.	6 48	3.5	76	8	M5 x 0	.8	22.5
MY3B40	138	14	38	1	2 18	54	12	M6	x 1	12	160	8.	6 58	3	90	12	M6 x 1		27
MY3B50	155	14	49		3 16	67	14	M6	x 1	15.5	190	9	60)	112	12	M6 x 1		27
MY3B63	178	17	60	:	3 20.5	84	16.5	M8	x 1.25	22	220	11	68	3	134	16	M8 x 1	.25	31
Model	NE	NG	NH	NW	Р	PA	PB	PC	PD	PE	PF	PG	Q	QW	Т	TT	UU	YW	Z
MY3B16	22.5	8	17.2	43	M5 x 0.8	44	26	32.5	4	9.7	8.5	4	114	19	7	6.5	30	42	122
MY3B20	27.5	10	20.8	53	M5 x 0.8	54	30	40	5	11.2	10	4.5	139	23	8	9	35	52	148
MY3B25	32	10	24	65	Rc, NPT, G1/8	64	40	47.5	6	14.5	12.2	6	166	30	10	9	47	62	178
MY3B32	39	14	31	79	Rc, NPT, G1/8	92	44	64	6	16	15	7	211	33	10	13.5	52	77	225
MY3B40	46	15	37	94	Rc, NPT, G1/4	112	60	80	7.5	19.5	16.5	8.5	259	40	14	14	66	92	276
MY3B50	58	25	47.5	116	Rc, NPT, G3/8	142	66	95	8.5	20.5	20	8.5	293	44	15	21	74	114	310
MY3B63	70	29	58	139	Rc, NPT, G3/8	162	84	110	10	23.5	27.5	10	336	64	16	20	99	136	356


SMC

Standard Type: Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63

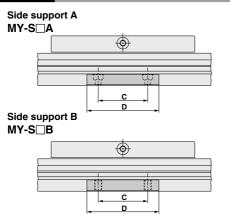
Stroke adjustment unit

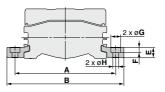
Low load shock absorber + Adjustment bolt

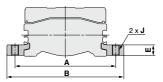

MY3B Bore size - Stroke L

												(mm)
Applicable cylinder	ES	EC	EY	FC	h	S	SD	TS	TR	TU	W	Shock absorber model
MY3B16	14.1	21.5	26.5	34.5	2.4	40.8	25.8	6	0.9	25	62	RB0806
MY3B20	14.1	26.5	31.5	41	2.4	40.8	22.3	6	4.4	21.5	72	RB0806
MY3B25	20.1	29.8	36.5	51.5	3.6	46.7	25.2	7	1.4	28.5	90	RB1007
MY3B32	20.1	37.5	44.5	60	3.6	46.7	20.7	7	5.9	24	105	RB1007
MY3B40	30.1	45	53.5	72.5	5	67.3	36.3	12	0.9	39	128	RB1412
MY3B50	30.1	56.5	66.5	88	5	67.3	34.3	12	2.9	37	150	RB1412
MY3B63	36.1	70.5	83.5	108	6	73.2	36.2	15	0.9	43	178	RB2015

Note) When the stroke adjustment unit is used, the fitting type, which can be connected with the port on the body front and the back, will be limited. Refer to page 1127 for details.

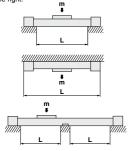

Heavy-loaded shock absorber + Adjustment bolt




												(mm)
Applicable cylinder	ES	EC	EY	FC	h	S	SD	TS	TR	TU	w	Shock absorber model
MY3B16	14.1	23	29.5	34.5	2.4	46.7	31.7	7	0.9	25	62	RB1007
MY3B20	14.1	27.5	34	41	2.4	46.7	28.2	7	4.4	21.5	72	RB1007
MY3B25	20.1	31.8	41	52.2	3.6	67.3	45.8	12	1.4	28.5	90	RB1412
MY3B32	20.1	39.5	49	60.5	3.6	67.3	41.3	12	5.9	24	105	RB1412
MY3B40	30.1	48	60.5	73.5	5	73.2	42.2	15	0.9	39	128	RB2015
MY3B50	30.1	58.5	71	88.5	5	73.2	40.2	15	2.9	37	150	RB2015
MY3B63	36.1	74.5	91	108	6	99	62	25	0.9	43	178	RB2725

Note) When the stroke adjustment unit is used, the fitting type, which can be connected with the port on the body front and the back, will be limited. Refer to page 1127 for details.

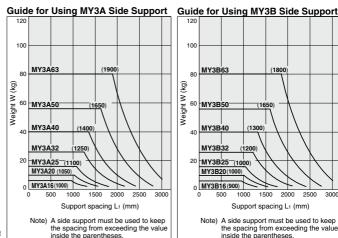
Side Support

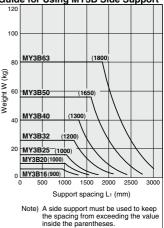

(r	1	ſ	r	T	1

										(mm)
Model	Applicable cylinder	Α	В	С	D	Е	F	G	н	J
MY-S16 ^A B	MY3A16·MY3B16	53	63.6	15	26	4.9	3	6.5	3.4	M4 x 0.7
MY3-S20 A	MY3A20·MY3B20	65	77.6	25	38	5.9	3.5	8	4.5	M5 x 0.8
MY-S25 A	MY3A25·MY3B25	77	91	35	50	8	5	9.5	5.5	M6 x 1
MY-S32 &	MY3A32·MY3B32	97	115	45	64	11.7	6	11	6.6	M8 x 1.25
WIT-332 B	MY3A40-MY3B40	112	130	40	04	11.7	0		0.0	100 X 1.20
MY-S50 A	MY3A50·MY3B50	138	160	55	80	14.8	8.5	14	9	M10 x 1.5
MT-350 B	MY3A63·MY3B63	160	182	55	80	14.0	0.5	14	9	WITU X 1.5

Note) A set of side supports consists of a left support and a right support.

Guide for Using Side Support

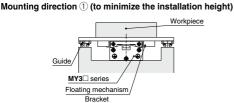

For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load weight. In such a case, use a side support in the middle section. The spacing (L) of the support must be no more than the values shown in the graph on the right.

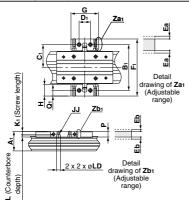


Caution

① If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, use of a side support is recommended even if the spacing value is within the allowable limits shown in the graph. 2 Support brackets are not for mounting; use

them solely for providing support.




Floating Bracket

Facilitates connection to other guide systems.

Application

Mounting Example

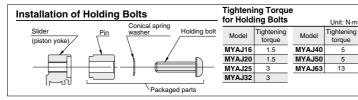
MY3 Floating Bracket Mounting Dimensions

Madel	Applicable			Commo	n			Adjustm	ent range	Madal	Applicable			Commo	n			Adjustme	ent range
Model	cylinder	G	н	JJ	L	P	LD	Ea	Eb	Model	cylinder	G	н	JJ	L	Р	LD	Ea	Eb
MYAJ16	MY3□16	38	20	M4 x 0.7	4.5	10	6	1	1	MYAJ40	MY3□40	72	32	M8 x 1.25	6.5	16	11	1	1
MYAJ20	MY3□20	50	21	M4 x 0.7	4	10	6.5	1	1	MYAJ50	MY3□50	90	36	M8 x 1.25	6.5	16	11	1	1
MYAJ25	MY3□25	55	22	M6 x 1	5.5	12	9.5	1	1	MYAJ63	MY3063	100	40	M10 x 1.5	9	19	14	1	1
MYAJ32	MY3 32	60	22	M6 x 1	5.5	12	9.5	1	1				-						

	Applicable	Mounting direction ①													
Model	cylinder	A 1	B1	C1	D1	F1	K 1	Q1							
MYAJ16	MY3016	29	68	34	18	88	5.5	10							
MYAJ20	MY3 20	34	81	40.5	20	102	6	10.5							
MYAJ25	MY3□25	38.5	90	45	24	112	6.5	11							
MYAJ32	MY3□32	47	106	53	30	128	6.5	11							

_	Mandal	Applicable	Mounting direction.						
	Model	cylinder	A 1	B1	C1	D1	F 1	K 1	Q1
	MYAJ40	MY3□40	56	130	65	32	162	9.5	16
	MYAJ50	MY3□50	69	156	78	40	192	9.5	18
	MYAJ63	MY3063	86	186	93	50	226	10	20

Model	Applicable cylinder	Mounting direction 2						
woder		A2	B2	C2	D2	F2	K2	Q2
MYAJ16	MY3□16	36	58	29	30	68	10	5
MYAJ20	MY3□20	41	70	35	35	80	10	5
MYAJ25	MY3□25	46	80	40	40	92	14	6
MYAJ32	MY3□32	54	96	48	46	108	14	6

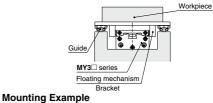

Model	Applicable cylinder	Mounting direction ²							
woder		A2	B2	C2	D2	F2	K2	Q2	
MYAJ40	MY3□40	68	114	57	55	130	19	8	
MYAJ50	MY3□50	81	136	68	70	152	20	8	
MYAJ63	MY3□63	100	166	83	80	185	23	9.5	

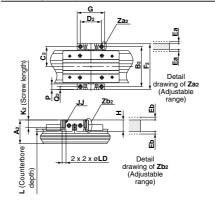
5

5

13

Note) Floating brackets are shipped as a set of left and right brackets.




MYAJ (1 set)

oomponent i arta					
Description	Qty.				
Bracket	2				
Pin	2				
Conical spring washer	2				
Holding bolts	2				

Application

Mounting direction 2 (to minimize the installation width)

(mm)

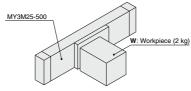
MY3M Series

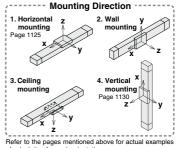
Slide bearing guide type (Air cushion)

ø16, ø25, ø40, ø63

100

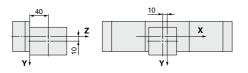
3


MY3M Series Model Selection


The following are steps for selecting the MY3 series which is best suited to your application.

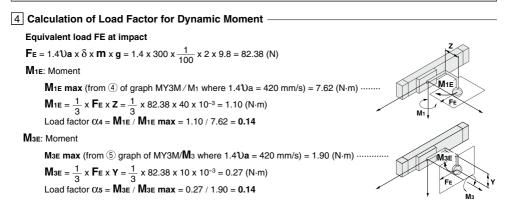
Calculation of Guide Load Factor

1 Operating Conditions


Cylinder	MY3M25-500
Average operating speed υa	300 mm/s
Mounting direction	Wall mounting
Cushion ·····	Air cushion (δ = 1/100)
J	

of calculation for each orientation. * For ceiling mounting, refer to page 992.

2 Load Blocking


Workpiece Mass and Center of Gravity

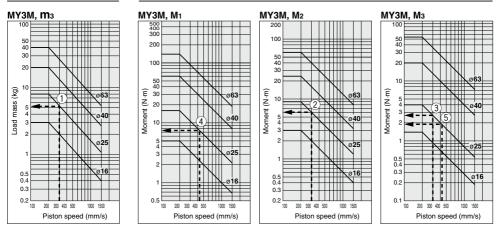
Workpiece	Mass (m)	Center of gravity				
no.		X-axis	Y-axis	Z-axis		
W	2 kg	10 mm	10 mm	40 mm		

3 Calculation of Load Factor for Static Load M3: Mass **M**3 max (from 1) of graph MY3M / m3) = 5.33 (kg) Load factor $\alpha_1 = m_3 / m_3 max = 2 / 5.33 = 0.38$ m₃ M2: Moment M₂ max (from (2) of graph MY3M / M₂) = 6 (N·m)..... $M_2 = m_3 \times q \times Z = 2 \times 9.8 \times 40 \times 10^{-3} = 0.78 (N \cdot m)$ m3 Load factor $\alpha_2 = M_2 / M_2 \max = 0.78 / 6 = 0.13$ M3 Moment M3 max (from 3 of graph MY3M / M3) = 2.67 (N·m)..... $M_3 = m_3 \times q \times X = 2 \times 9.8 \times 10 \times 10^{-3} = 0.2$ (N·m) ma Load factor $\alpha_3 = M_3 / M_3 max = 0.2 / 2.67 = 0.07$ } Мз

Model Selection MY3M Series

Calculation of Guide Load Factor

5 Sum and Examination of Guide Load Factors


$\Sigma \alpha = \Omega_1 + \Omega_2 + \Omega_3 + \Omega_4 + \Omega_5 = 0.87 \le 1$

The above calculation is within the allowable value, and therefore the selected model can be used. Select a shock absorber separately.

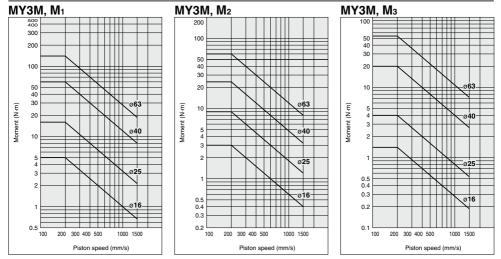
In an actual calculation, when the sum of guide load factors $\Sigma \alpha$ in the formula above is more than 1, consider decreasing the speed, increasing the bore size, or changing the product series. This calculation can be easily made using the "SMC Pneumatic CAD System".

Load Mass

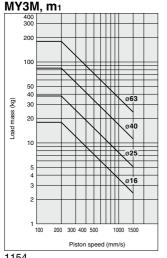
Allowable Moment

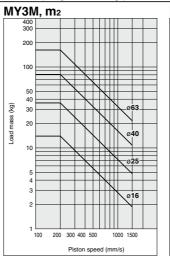
Maximum Allowable Moment / Maximum Allowable Load

Model	Bore size	Maximum a	llowable mo	ment (N•m)	Maximum allowable load (kg)				
Iviodei	(mm)	M1	M2	Мз	m 1	m2	m3		
	16	5	3	1.4	18	14	3		
МҮЗМ	25	16	9	4	38	36	8		
IVI T SIVI	40	60	24	20	84	81	20		
	63	140	60	54	180	163	40		

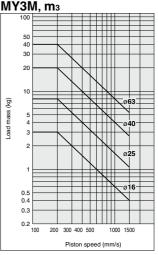

* We recommend that the static M2 moment direction should be as illustrated

Also, when using the product in a wall mount application (m3 applied), we recommend that the mounting orientation of the adjustment side (hexagon socket head button bolt side) should be in the upper position.

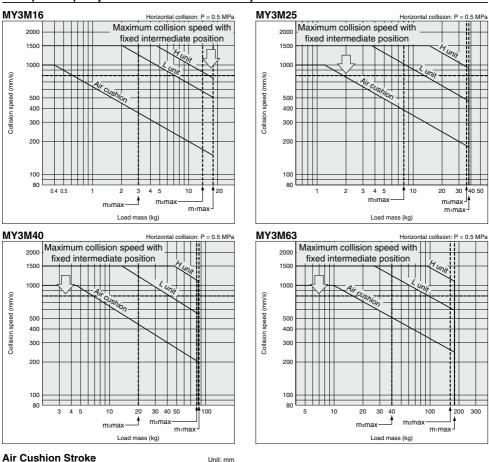

Recommended direction of applying M₂ moment


Adjustment side (Hexagon socket button head screw side)

Maximum Allowable Moment Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions.



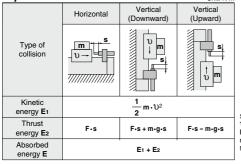
Select the load from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions. Maximum Allowable Load



SMC

Cushion Capacity

Absorption Capacity of Air Cushion and Stroke Adjustment Unit



	on a man
Bore size (mm)	Cushion stroke
16	13
25	18
40	25
63	30

Cushion Capacity

Absorption Capacity of Air Cushion and Stroke Adjustment Unit

Calculation of Absorbed Energy for Stroke Adjustment Unit with Built-in Shock Absorber Unit: N·m

Stroke Adjustment Unit

Fine Stroke Adjustment Range

Bore size (mm)	Fine stroke adjustment range
16	0 to -10
25	0 to -12
40	0 to -16
63	0 to -24

Note) The maximum operating speed will differ when the stroke adjustment unit with the spacer for intermediate securing is used outside the maximum fine stroke adjustment range (with reference to the fixed stroke end). (Refer to the graph on page 1155.)

Symbols U: Speed of impacting object (m/s)

m: Weight of impacting object (kg)

Unit[,] mm

- F: Cylinder thrust (N) s : Shock absorber stroke (m)
- g : Gravitational acceleration (9.8 m/s2)

Note) The speed of the impacting object is measured at the time of collision with the shock absorber.

Stroke Adjustment

Unit[,] N₂m

Unit: N·m

<Stroke adjustment of the adjustment bolt>

Loosen the lock nut for the adjustment bolt, adjust the stroke on the head cover side with a hexagon wrench, and secure with a lock nut

<Stroke adjustment of the shock absorber>

Loosen the fixing bolts on the shock absorber side and rotate the shock absorber for stroke adjustment. Tighten the fixing bolts to secure the shock absorber. Use caution not to overtighten the fixing bolts.

(Refer to "Stroke Adjustment Unit Tightening Torque for Fixing Bolts.")

Stroke Adjustment Unit

Tightening	Torque for	Fixing Bolts	
Dere ein	(mm)	Linit	

Bore size (mm)	Unit	Tightening torque
16	L	0.7
10	Н	0.7
25	L	3.5
25	Н	3.5
40	L	13.8
40	Н	13.0
63	L	27.5
03	Н	21.0

Shock Absorber

Tightening Torque for Fixing Bolts

Unit	Tightening torque		
L	0.6		
Н	0.0		
L	1.5		
Н	1.5		
L	3.0		
Н	3.0		
L	5.0		
Н	5.0		
	L H L H L H L		

∧ Caution

1. Use caution not to have your hands caught in the unit.

When using a cylinder with stroke adjustment unit, the space between the slide table (slider) and the stroke adjustment unit is very narrow. Care should be taken to avoid the danger of hands being caught in this small space. Install a protective cover to prevent the risk of accidents to the human body.

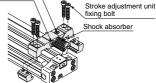
∧ Caution

2. The stroke adjustment unit may interfere with the mounting bolt when mounting the cylinder on the equipment.

Loosen the unit fixing bolt and dislocate the stroke adjustment unit before mounting the cylinder. After fixing the cylinder, move the stroke adjustment unit back to the desired location and tighten the unit fixing bolt.

Use caution not to overtighten the fixing bolts.

(Refer to "Stroke Adjustment Unit Tightening Torque for Fixing Bolts".)


3. When using the adjust bolt to perform stroke adjustment, fix the adjust bolt so that it is on the same side as the shock absorber.

Fix the adjust bolt on the same side as the shock absorber that was used for stroke adjustment.

If the shock absorber's stopper side and the front end of the adjust bolt are not on the same side, the slide table stopping position becomes unstable, and durability may drop.

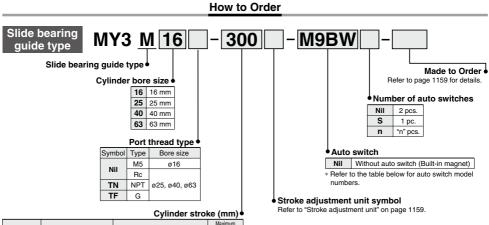
4. Securing the unit body

Absorber fixing bolt Adjustment bolt lock nut

Tighten the four unit fixing bolts equally to secure the unit body.

Do not fix and use the stroke adjustment unit at an intermediate position.

When the stroke adjustment unit is fixed in an intermediate position, slippage can occur depending on the amount of energy released at the time of an impact. In that case, use a short spacer or a long spacer. (Refer to "Stroke Adjustment Unit Tightening Torque for Fixing


Bolts.")

If the stroke adjustment unit is fixed at an intermediate position, the energy absorption capacity may be different. For this reason, refer to the maximum absorbed energy listed above, and use the adjustment unit within the allowable absorption capacity.

Mechanically Jointed Rodless Cylinder Slide bearing guide type

MY3M Series ø16, ø25, ø40, ø63

Bore size	Standard stroke*1	Long stroke	manufacturable stroke
16, 25 40, 63		Strokes of 2001 to 3000 mm (1 mm increments) exceeding the standard stroke	3000

Ordering example

* Long stroke can be ordered the same as the standard stroke. MY3M20-3000L-M9BW Note) Please be advised that with stroke 49 or less, there are cases where auto switch mounting is not possible and the performance of the air cushion may decline.

Applicable Auto Switches/Refer to pages 1289 to 1383 for further information on auto switches

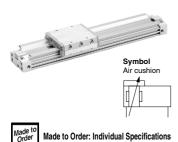
		-	light		L	oad volta	ge	Auto swit	ch model	Lead	wire I	engti	n (m)					
Туре	Special function	Electrical entry	Indicator	Wiring (Output)	D	С	AC	Perpendicular	In-line	0.5 (Nil)	1 (M)	3 (L)	5 (Z)	Pre-wired connector	Applica	le load		
_				3-wire (NPN)		5 V, 12 V		M9NV	M9N	•	٠	۲	0	0	IC circuit			
switch	-			3-wire (PNP)				M9PV	M9P	•	•	٠	0	0	IC CIrcuit			
SW				2-wire		12 V		M9BV	M9B	•	٠	۲	0	0	_			
auto	6			3-wire (NPN)	EV 10 V	E V. 10 V	24 V 5 V, 12 V -	5 V 10 V		M9NWV	M9NW	•	٠	۲	0	0	IC circuit	
ear	Diagnostic indication (2-color indicator) Grommet	Grommet Ye	Grommet Ye	Yes	3-wire (PNP)	24 V		M9PWV	M9PW	•	•	٠	0	0	IC CIrcuit	Relay, PLC		
state						2-wire		12 V		M9BWV	M9BW	$\bullet \bullet \bullet \circ$	0	0	_	. 20		
ids					3-wire (NPN)		5 V. 12 V		M9NAV*1	M9NA*1	0	0	۲	0	0	IC circuit		
Solid	Water resistant (2-color indicator)			3-wire (PNP)		5 V, 12 V		M9PAV*1	M9PA*1	$\circ \circ \bullet \circ$	0	0	IC circuit					
				2-wire		12 V		M9BAV*1	M9BA*1	0	0	•	0	0	—			
Reed o switch		0	Yes	3-wire (NPN equiv.)	—	5 V	-	A96V	A96	•	•	•	•	0	IC circuit	_		
	—	Grommet		2-wire	24 V	12 V	100 V	A93V	A93	•	•	٠	•	O*2	—	Relay,		
auto			No	∠-wire	24 V	12 V	100 V or less	A90V	A90	•	٠	٠	٠	0*2	IC circuit	PLC		

*1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance

*2 The load voltage used is 24 VDC.

* Lead wire length symbols: 0.5 m Nil (Example) M9NW 1 m M (Example) M9NWM * Auto switches marked with "O" are produced upon receipt of order

* Separate switch spacers (BMY3-016) are required for retrofitting of auto switches.


3 m L (Example) M9NWL 5 m ······· Z (Example) M9NWZ

* There are other applicable auto switches than listed above. For details, refer to page 1165.

Refer to pages 1258 to 1259 for the details of auto switches with a pre-wired connector.
Auto switches are shipped together (not assembled). (Refer to page 1165 for the details of auto switch mounting.)

Mechanically Jointed Rodless Cylinders MY3M Series

(For details, refer to page 1166.)

Helical insert thread

Shock absorber soft type

RJ series type

Specifications

Specifications

Symbol

-X168

Symbol

-XB22

Made to Order Click here for details

	40	05	40						
Bore size (mm)	16	25	40	63					
Fluid	Air								
Action	Double acting								
Operating pressure range	0.2 to 0.7 MPa 0.15 to 0.7 MPa								
Proof pressure	1.05 MPa								
Ambient and fluid temperature		5 to (60°C						
Cushion		Air cu	Ishion						
Lubrication		Not required							
Stroke length tolerance	1000) mm or less +1.8	, From 1001 mr	n ^{+2.8}					
Port size (Rc, NPT, G)	M5 x 0.8 1/8 1/4 3/8								

Piston Speed

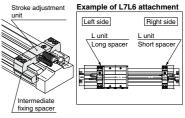
Specifications

Bore size (mm)	16	25	40	63			
Without stroke adjustment unit	80 to 1000 mm/s						
Stroke adjustment unit (L and H unit)		80 to 15	00 mm/s				
External shock absorber		80 to 15	00 mm/s				

* When the RB series is used, operate at a piston speed that will not exceed the absorption capacity of the air cushion and stroke adjustment unit.

 Because of its structure, the fluctuation of this cylinder's operating speed is greater than rod type cylinders. For applications that require constant speed, select an applicable equipment for the level of demand.

Stroke Adjustment Unit Specifications


Bore size (mm)		16		25		4	0	63	
Unit symbol		L	н	L	н	L	н	L	н
Shock absorber model		RB0806	RB1007	RB1007	RB1412	RB1412	RB2015	RB2015	RB2725
Shock absorber soft ty RJ series (-XB22) mod		RJ0806H	RJ1007H	RJ1007H	RJ1412H	RJ1412H	_	—	
Stroke adjustment	Without spacer	0 to	-10	0 to -12 0 to -16		-16	0 to -24		
range by intermediate	With short spacer	-10 to -20		-12 t	o –24	-16 t	o –32	-24 to -48	
fixing spacer (mm)	With long spacer	-20 t	o —30	-24 to -36		-32 to -48		-48 to -72	

* Stroke adjustment range is applicable for one side when mounted on a cylinder.

Stroke Adjustment Unit Symbol

			Right side stroke adjustment unit							
			Without	L: With lov + Adjustm	v load shock ent bolt	k absorber	H: With hig + Adjustme	h load shoc	k absorber	
			unit		With short spacer	With long spacer		With short spacer	With long spacer	
	Without unit		Nil	SL	SL6	SL7	SH	SH6	SH7	
i ke	L: With low load shock absorber +		LS	L	LL6	LL7	LH	LH6	LH7	
Left side stroke adjustment unit	Adjustment bolt	With short spacer	L6S	L6L	L6	L6L7	L6H	L6H6	L6H7	
de me	DOIL	With long spacer	L7S	L7L	L7L6	L7	L7H	L7H6	L7H7	
t si ust		load shock absorber +	HS	HL	HL6	HL7	н	HH6	HH7	
adj	Adjustment	With short spacer	H6S	H6L	H6L6	H6L7	H6H	H6	H6H7	
	bolt	With long spacer	H7S	H7L	H7L6	H7L7	H7H	H7H6	H7	

Stroke adjustment unit mounting diagram

* Spacers are used to fix the stroke adjustment unit at an intermediate stroke position.

Shock Absorber Specifications

Т	уре	RB 0806	RB 1007	RB 1412	RB 2015	RB 2725				
Max. energy	absorption (J)	2.9	5.9	19.6	58.8	147				
Stroke abs	orption (mm)	6	7	12	15	25				
Max. collisio	n speed (mm/s)		1500							
Max. operating fr	equency (cycle/min)	80	70	45	25	10				
Spring	Extended	1.96	4.22	6.86	8.34	8.83				
force (N)	Compressed	4.22	6.86	15.98	20.50	20.01				
Operating temp	erature range (°C)			5 to 60						

Note) The shock absorber service life is different from that of the MY3M cylinders depending on operating conditions. Allowable operating cycle under the specifications set in this catalog is shown below.

1.2 million times RB08

2 million times RB10 to RB2725

Note) Specified service life (suitable replacement period) is the value at room temperature (20 to 25°C). The period may vary depending on the temperature and other conditions. In some cases the absorber may need to be replaced before the allowable operating cycle above.

Theoretical Output

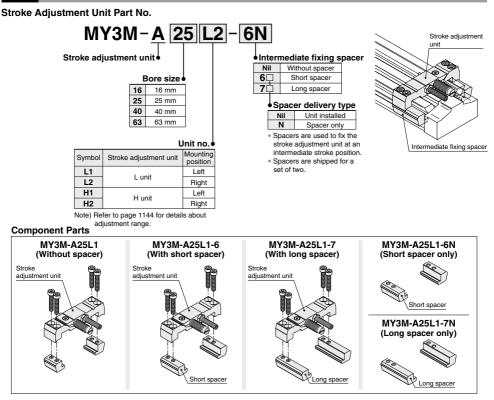
								Unit: N
Bore size	Piston area		C	Operatin	g pressu	ire (MPa	ι)	
(mm)	(mm ²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8
16	200	40	60	80	100	120	140	160
25	490	98	147	196	245	294	343	392
40	1256	251	377	502	628	754	879	1005
63	3115	623	934	1246	1557	1869	2180	2492

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Weight

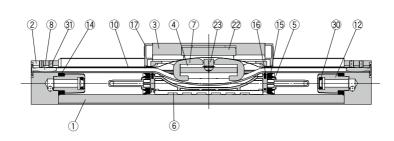
						Unit: kg	
Model	Bore size	Basic	Additional weight	Weight of	Stroke adjustment unit weigh (per unit)		
	(mm)	weight	per 50 mm stroke	moving parts	L unit weight	H unit weight	
	16	0.29	0.08	0.13	0.05	0.06	
мүзм	25 0.90		0.15	0.35	0.12	0.17	
IVI T SIVI	40	3.03	0.31	1.14	0.34	0.43	
	63	8.63	0.68	2.96	0.69	0.91	

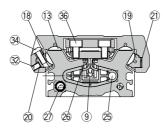
Calculation method/Example: MY3M25-400H

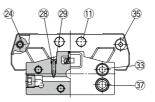

Basic weight 0.90 kg Cylinder stroke 400 st

Additional weight 0.15/50 st

H unit weight0.17 kg


0.90 + 0.15 x 400 ÷ 50 + 0.17 x 2 ≈ 2.44 kg


Option



Construction

МҮЗМ

Component Parts

No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover	Aluminum alloy	Hard anodized
3	Slide table	Aluminum alloy	Hard anodized
4	Piston yoke	Stainless steel	
5	Piston	Polyamide	
6	Wear ring	Polyacetal	
7	Belt separator	Polyacetal	
8	Belt clamp	Polybutylene terephthalate	
11	Stopper	Carbon steel	Nickel plated
12	Cushion boss	Aluminum alloy	Chromated
13	Bearing	Polyacetal	
16	Inner wiper	Special resin	
17	End cover	Polyamide	
18	Adjust arm A	Aluminum alloy	Chromated
19	Adjust arm B	Aluminum allov	Chromated

No.	Description	Material	Note
20	Backup spring	Stainless steel	
21	Bearing adjustment rubber	NBR	
22	Coupler body	Aluminum alloy	Hard anodized
23	Coupler pin	Carbon steel	Electroless nickel plated
24	Spacer	Stainless steel	
25	Magnet		
26	Seal magnet	Rubber magnet	
28	Cushion needle	Rolled steel	Nickel plated
31	Hexagon socket head set screw	Chrome molybdenum steel	Chromated
32	Hexagon socket head set screw	Chrome molybdenum steel	Chromated
33	Hexagon socket head cap screw	Chrome molybdenum steel	Chromated
34	Hexagon socket button head screw	Chrome molybdenum steel	Chromated
35	Hexagon socket button head screw	Chrome molybdenum steel	Chromated
36	Hexagon socket head cap screw	Chrome molybdenum steel	Chromated
37	Hexagon socket head plug	Carbon steel	Chromated

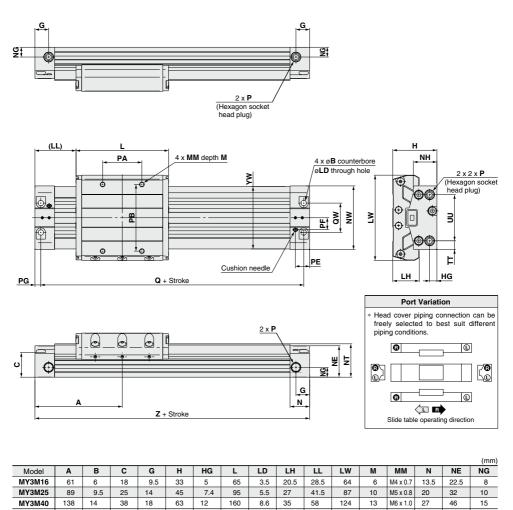
Beplacement Parts/Seal

nop	abellient i unt	,000					
No.	Description	Material	Qty.	MY3M16	MY3M25	MY3M40	MY3M63
9	Seal belt	Urethane Polyamide		MY3B16-16C-Stroke	MY3B25-16C-Stroke	MY3B40-16C-Stroke	MY3B63-16A-Stroke
10	Dust seal band	Stainless steel	1	MY3B16-16B-Stroke	MY3B25-16B-Stroke	MY3B40-16B-Stroke	MY3B63-16B-Stroke
29	O-ring	NBR	2	KA00309	KA00309	KA00320	KA00402
29	O-ring		2	(ø4 x ø1.8 x ø1.1)	(ø4 x ø1.8 x ø1.1)	(ø7.15 x ø3.75 x ø1.7)	(ø8.3 x ø4.5 x ø1.9)
14	Tube gasket	NBR	2				
15	Piston seal	NBR	2	MY3B16-PS	MY3B25-PS	MY3B40-PS	MY3B63-PS
27	O-ring	NBR	4	W13B10-F3	WI13B25-F3	WIT3040-F3	WIT3003-F3
30	Cushion seal	NBR	2				

* Seal kit includes (4, (5, 2) and 30. Order the seal kit based on each bore size.

* Seal kit includes a grease pack (10 g).

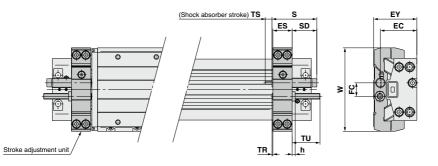
When () and () are shipped as single units, a grease pack is included (10 g per 1000 strokes). Order with the following part number when only the grease pack is needed. Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)


* For instructions on how to replace replacement parts/seals, refer to the operation manual.

Slide Bearing Guide Type: Ø16, Ø25, Ø40, Ø63

MY3M Bore size - Stroke

* Refer to "Specific Product Precautions" on page 1167 for mounting.

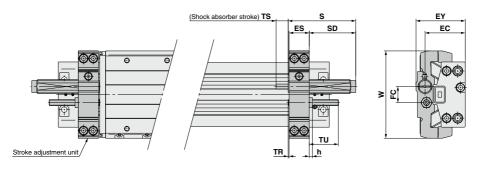


MY3M63	178	17	60	20.5 93	16.5	220	11	46	68	176	15	M10 x 1.5	31	70	29
								-							
Model	NH	NT	NW	P	PA	PB	PE	PF	PG	Q	QW	TT	UU	YW	Z
MY3M16	17.2	24	43	M5 x 0.8	28	48	9.7	8.5	4	114	19	6.5	30	44.6	122
MY3M25	24	34	65	Rc, NPT, G1/8	40	68	14.5	12.2	6	166	30	9	47	63.6	178
MY3M40	37	49	94	Rc, NPT, G1/4	100	100	19.5	16.5	8.5	259	40	14	66	93.6	276
MY3M63	58	76	139	Rc, NPT, G3/8	130	150	23.5	27.5	10	336	64	20	99	138	356

Slide Bearing Guide Type: Ø16, Ø25, Ø40, Ø63

Stroke adjustment unit

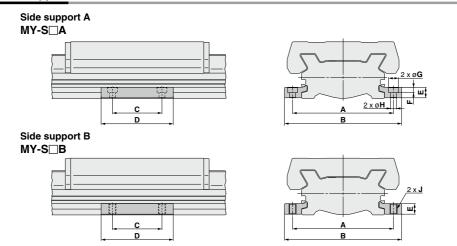
Low load shock absorber + Adjustment bolt MY3M Bore size - Stroke L



												(mm)
Applicable cylinder	ES	EC	EY	FC	h	S	SD	TS	TR	TU	W	Shock absorber model
MY3M16	14.1	27.5	32.5	9	2.4	40.8	25.8	6	0.9	25	64	RB0806
MY3M25	20.1	38	44.5	14	3.6	46.7	25.2	7	1.4	28.5	87	RB1007
MY3M40	30.1	54	62.5	24	5	67.3	36.3	12	0.9	39	124	RB1412
MY3M63	36.1	81	92.5	32	6	73.2	36.2	15	0.9	43	176	RB2015

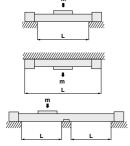
Note) When the stroke adjustment unit is used, the fitting type, which can be connected with the port on the body front and the back, will be limited. Refer to page 1127 for details.

Heavy-loaded shock absorber + Adjustment bolt


MY3M Bore size - Stroke H

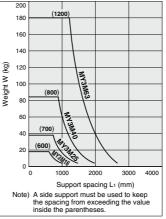
												(mm)
Applicable cylinder	ES	EC	EY	FC	h	S	SD	TS	TR	TU	w	Shock absorber model
MY3M16	14.1	28.5	34.5	11	2.4	46.7	31.7	7	0.9	25	64	RB1007
MY3M25	20.1	40	49	16	3.6	67.3	45.8	12	1.4	28.5	87	RB1412
MY3M40	30.1	57	69	26	5	73.2	42.2	15	0.9	39	124	RB2015
MY3M63	36.1	84.5	100	32	6	99	62	25	0.9	43	176	RB2725

Note) When the stroke adjustment unit is used, the fitting type, which can be connected with the port on the body front and the back, will be limited. Refer to page 1127 for details.

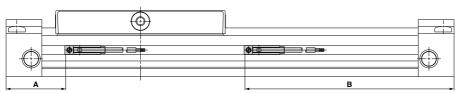

Side Support

										(mm)
Model	Applicable cylinder	Α	В	С	D	E	F	G	н	J
MY-S16 ^A _B	MY3M16	53	63.6	15	26	4.9	3	6.5	3.4	M4 x 0.7
MY-S25 ^A _B	MY3M25	77	91	35	50	8	5	9.5	5.5	M6 x 1
MY-S32 ^A _B	MY3M40	112	130	45	64	11.7	6	11	6.6	M8 x 1.25
MY-S50 ^A _B MY3M63 160 182 55 80 14.8 8.5 14 9 M10 x 1.5									M10 x 1.5	
Note) A set of side supports consists of a left support and a right support.										

Guide for Using Side Support


For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load weight. In such a case, use a side support in the middle section. The spacing (L) of the support must be no more than the values shown in the graph on the right.

A Caution


- If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, use of a side support is recommended even if the spacing value is within the allowable limits shown in the craph.
- Support brackets are not for mounting; use them solely for providing support.

Guide for Using MY3M Side Support

MY3 Series Auto Switch Specifications

Auto Switch Proper Mounting Position (at Stroke End Detection)

(mm)

Auto Switch Proper Mounting Position MY3A

				(1111)
Auto switch model	D-M9 D-M9 D-M9 D-M9 D-M9 D-M9	□V □W □WV □A	D-A D-A	
Bore size	Α	В	Α	В
16	26	84	22	88
20	26	102	22	106
25	33	117	29	121
32	40.5	152.5	36.5	156.5
40	46.5	193.5	42.5	197.5
50	47	227	43	231
63	57.5	262.5	53.5	266.5

Note) The values in the table indicate the position of the auto switch's front end. Adjust the auto switch after confirming the operating conditions in the actual setting.

Auto switch model D-M9 D-M9 D-M9 W D-M9 W

MY3B/MY3M

	D-M9 D-M9 D-M9 D-M9	⊡WV □A	D-A:	9⊡V 9⊡V
Bore size	Α	В	Α	В
16	32	90	28	94
20	36	112	32	116
25	47	131	43	135
32	56.5	168.5	52.5	172.5
40	64.5	211.5	60.5	215.5
50	65	245	61	249
63	75.5	280.5	71.5	284.5

Operating Range

							(mm)
Auto switch model	Bore size						
	16	20	25	32	40	50	63
D-M9□/M9□V D-M9□W/M9□WV D-M9□A/M9□AV	3.5	5	6	6.5	8	8	8
D-A9□/A9□V	6.5	9.5	10.5	12	15	13.5	14

 \ast Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed. (Assuming approximately $\pm 30\%$ dispersion.) It may vary substantially depending on an ambient environment.

Auto Switch Mounting

When mounting an auto switch, first hold the switch spacer with your fingers and push it into the groove. Confirm that it is aligned evenly within the groove and adjust the position if necessary. Then, insert the auto switch into the groove and slide it into the spacer.

After deciding on the mounting position within the groove, slip in the mounting screw, which is included, and tighten it, using a flat head watchmaker's screw driver.

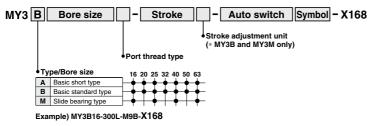
0 0 6 6 0 6 Note) Use a watchmaker's screw driver with a handle Switch spacer diameter of 5 to 6 mm to (BMY3-016) fasten the auto switch mounting screws. Switch mounting screw (Accessory The tightening torque for switch) (M2.5 x 4 L) should be approximately 0.1 to 0.15 N·m Flat head watchmaker's screw driver (Not included) Switch Spacer (mm) Applicable bore size (mm) 16 20 25 32 40 50 63 BMY3-016 Switch space

Besides the models listed in How to Order, the following auto switches are applicable. • For solid state auto switches, auto switches with a pre-wired connector are also available. Refer to pages 1358 and 1359 for details. • Normally closed (NC = to contact) solid state auto switches (D-M92E(V)) are also available. Refer to page 1306 for details.

∕ SMC

(mm)

MY3 Series Made to Order: Individual Specifications


Please contact SMC for detailed dimensions, specifications and delivery lead times.

-X168

1 Helical Insert Threads

The mounting threads of the slider are changed to helical insert threads. The thread size is the same as standard.

MY3 Series **Specific Product Precautions**

Be sure to read this before handling the products. Refer to page 8 for safety instructions and pages 9 to 18 for actuator and auto switch precautions.

Selection

∕∆Warning

1. When applying a load directly, set the design so that all the mounting threads on the slide table's upper surface are used.

Parts have been made smaller to achieve a compact size.

If only some of the threads are used when mounting the load, the impact that results from the operation may cause extremely concentrated stress or disfiguration and may negatively affect operation.

In worst cases the cylinder may be damaged, so please be careful

∧ Caution

1. Provide intermediate supports for long stroke cylinders.

Provide intermediate supports for cylinders with long strokes to prevent rod damage due to sagging of the rod, deflection of the tube, vibration and external loads.

For detailed information, please refer to "Guide for Using Side Support" on pages 1148 and 1164.

2. For intermediate stops, use a dual-side pressure control circuit.

Since the mechanically jointed rodless cylinders have a unique seal structure, slight external leakage may occur. Controlling intermediate stops with a 3 position valve cannot hold the stopping position of the slide table (slider). The speed at the restarting state also may not be controllable. Use the dual-side pressure control circuit with a PAB-connected 3 position valve for intermediate stops.

3. Cautions on less frequent operation

When the cylinder is used extremely infrequently, operation may be interrupted in order for anchoring and a change lubrication to be performed or service life may be reduced.

Mounting

▲ Caution

1. At each end of the cylinder, secure a mounting surface with a 5 mm or longer area that contacts the lower side of the cylinder.

2. If the cylinder is mounted on the ceiling or wall under the condition where high load factors or impacts are expected, use side supports, in addition to the fixing bolts on the head cover, to support both ends of the cvlinder tube.



Mounting

▲ Caution

3. Do not mount a slide table on the fixed equipment surface. Head cover Cylinder tube It may cause damage or

malfunctions since an excessive load is applied to the bearing.

4. Do not mount in a cantilevered way.

Since the cylinder body deflects, it may cause malfunctions.

5. Do not mount cvlinders as they are twisted.

> When mounting, be sure for a cylinder tube not to be twisted. The flatness

Cylinder tube Mounting in a cantilevered way

of the mounting surface is not appropriate, the cylinder tube is twisted, which may cause air leakage due to the detachment of a seal belt, damage a dust seal band, and cause malfunctions.

6. Do not generate negative pressure in the cvlinder tube.

Take precautions under operating conditions in which negative pressure is generated inside the cylinder by external forces or inertial forces. Air leakage may occur due to separation of the seal belt. Do not generate negative pressure in the cylinder by forcibly moving it with an external force during the trial operation or dropping it with self-weight under the non-pressure state, etc. When the negative pressure is generated, slowly move the cylinder by hand and move the stroke back and forth. (When using with a stroke adjustment unit, please either remove the unit or adjust the stroke to the full stroke.)

Operating Environment

\land Warning

- 1. Avoid use in environments where a cylinder will come in contact with coolants, cutting oil, droplet of water, adhesive matter, or dust, etc. Also avoid operation with compressed air that contains drainage or foreign matter, etc.
 - · Foreign matter or liquids on the cylinder's interior or exterior can wash out the lubricating grease, which can lead to deterioration and damage of dust seal band and seal materials, causing a danger of malfunction.

When operating in locations with exposure to water and oil drops, or in dusty locations, provide protection such as a cover to prevent direct contact with the cylinder, or mount so that the dust seal band surface faces downward, and operate with clean compressed air.

2. The product is not designed for clean room usage.